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1 Introduction

1.1 Problem statement

Databases containing personal, medical or financial information about an individ-
ual are usually classified as sensitive. Often the identity of the person is somehow
stored in the database, whether by name, personal code or a combination of at-
tributes. In many countries it is illegal to process such data without a special
license from the authorities. Such protection is needed to preserve the privacy of
individuals and prevent abuse of the data.

This level of protection is a problem for research organisations, that cannot
learn global properties or trends from collected data. It also prevents government
organisations from providing accurate demographics reports and managing medical
registries about the population. Data analysis restriction is not the only problem
for these organisations but a solution is nevertheless expected.

In this thesis we address a simplified version of the problem. Assume that we
have asked p people q sensitive questions. By collecting the answers we obtain a
matrix D with p rows and q columns denoted that represents our data. Our goal
is to devise a method for computing aggregate statistics from this matrix without
compromising the privacy of a single person, that is, revealing values in matrix D.

1.2 General solutions

To give an impression of the problem we discuss three possible solutions and eval-
uate them with regard to security and usability for data analysis. Let us consider
a group of parties that gather data and construct the matrix. Let M be the data
miner that is interested in global patterns. In the common scenario, all parties
give their data to M that constructs D and runs aggregation and data mining
algorithms on it. The parties have to trust that M will not use the data for selfish
gains. They have no way of ensuring the privacy of people who have provided the
data, because the miner requires control over the complete database to perform
computations.

We want to keep a specific party from having the complete database. This way
the parties will not have to trust a single entity. We now present three generic
approaches for solving this problem. It is important to note, that from the three
presented solutions only the last one offers an acceptable balance between privacy
and data utility.

Solution 1: Distribution of rows. We can divide the p× q data matrix D into
smaller matrices D1, . . . ,Dt so that each smaller matrix contains some rows from
D. We can then distribute matrices D1, . . . ,Dt to independent miners M1, . . . ,Mt
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that compute results based on their part of the data and forward them to the
“master analyst” M that combines the results of the miners. Figure 1 illustrates
this analysis process.

resultsM2

M1

M3

M

D

D1

D2

D3

Figure 1: Database distribution by rows between three miners.

Unfortunately, this solution does not provide privacy of the data, as each party
will have one or more complete rows of the matrix D. One row of the matrix
contains data about a single person who answered the questions so the party with
this row will have access to all the data about this person. If only a subset of the
miners are malicious, then the risk of data compromise is smaller than it would be
if a single miner processed the data. Still, this solution is definitely not secure for
use in real life.

Solution 2: Distribution of columns. A similar idea is to divide the matrix
D so that matrices D1, . . . ,Dt contain columns from the original matrix D. This
allows us to keep the data identifying the person in a separate database from the
sensitive data. Figure 2 illustrates such a scenario.

This solution decreases the usability of the data, because one miner has access
only to some attributes. For example, this could keep us from finding reliable
aggregations or association rules based on all relevant attributes, because some of
them might not be available for a given miner. Since data analysis is still the main
goal, we have to find some other way to provide security.

Distributing the data to columns also does not provide privacy, because some
combinations of attributes may uniquely identify a person. For example, in a small
village there may be just one male person with a high salary.

Solution 3: Distribution of values.Our solution is based on the third approach.
Instead of distributing matrix D into smaller matrices we distribute its values
between miners M1, . . . ,Mt so that no single miner nor a pair of them can find the
original value given their parts of this value. We use secret sharing to distribute
values in the original matrix into t parts. These parts will form matrices D1, . . . , Dt

as shown on Figure 3.
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Figure 2: The database is distributed by columns between three miners.
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Figure 3: The values in the database are distributed between three miners.
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The miners will then run secure multiparty computation protocols to perform
computations on the data without reconstructing the original values. When aggre-
gation results are computed, each miner sends its part of the results to the client,
that combines the parts to form the complete results. The miners must check
their inputs and allow only justified computations and reject queries that would
compromise privacy.

In this work we present a theoretical framework to complete this task. We also
demonstrate the feasibility of the proposed solution by building an implementation
of the framework.

1.3 Outline of this thesis

This thesis describes the concepts used in designing our solution and the derived
implementation. The work is structured into chapters as described below.

• Chapter 2 gives an overview of secure multiparty computation. The chapter
contains basic definitions and an overview of results in this area. We also
describe a method of proving security of protocols—the ideal versus real
world model.

• Chapter 3 describes secret sharing schemes. In particular, we give an analysis
of Shamir’s secret sharing scheme. We show how the homomorphic property
of a secret sharing scheme allows us to perform computations with shared
data. In the conclusion of the chapter we show the similarity between coding
theory and secret sharing and identify coding schemes suitable for building
secret sharing schemes.

• Chapter 4 presents the theoretical framework of our solution. We list our
design goals along with engineering choices made according to those goals.
We also give an overview of the security model associated with our system
and present protocols that perform basic operations in our framework.

• Chapter 5 is dedicated to our implementation—Sharemind secure comput-
ing platform. We describe the capabilities of the platform and the computa-
tion environment it provides.

• Chapter 6 presents practical results achieved on our implementation and
discusses the feasibility of the approach.
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1.4 Author’s statement

In this section we list the author’s original contributions to this thesis. Chapters
2 and 3 give an overview of known results in multiparty computation and secret
sharing related to this work. The author developed and verified the framework
and protocols described in Chapter 4 in co-operation with Sven Laur. The main
contribution of the author is creating an implementation of the framework—the
Sharemind platform that is described in Chapter 5. The author is responsible for
the architecture and design of the software and also the symmetrical implementa-
tion of protocols—during computation each party runs the same code with minor
exceptions. In Chapter 6 the author presents the experiment results achieved
with the Sharemind platform. The source code of Sharemind is released under
version 2 of the GNU General Public License.
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2 Secure multiparty computation

2.1 Definitions

Let us consider an interactive computing scenario with more than one party. Each
party has some input value xi and together they want to compute some output
based on the inputs of all parties. To achieve that, the parties must use multiparty
computation which means exchanging messages and performing local computations
until all parties have learned the desired output.

Secure multiparty computation is the evaluation of a function f(x1, . . . , xn) =
(y1, . . . , yn) in such a way that the output is correct and the inputs of the parties
are kept private. Each party Pi will get the value of yi and nothing else. For
further discussion on multiparty computation see the manuscript [CD04]

A classical example of multiparty computation is the millionaire problem. As-
sume that Alice and Bob are millionaires who would like to know, which one of
them is richer without revealing their exact wealth.

More precisely, let Alice’s wealth be x1 and Bob’s wealth be x2. Then the
function we need to evaluate is “greater than”, that is, we need to find out, if
x1 > x2 without anyone else knowing x1 or x2. There are various solutions to
this problem. A sketch for a solution was presented together with the problem
introduction by Yao [Yao82].

To allow parties to perform computations together, we must provide them
with communication channels. There are two main communication models used
in secure multiparty computation: information-theoretic model and cryptographic
model. In the information-theoretic model all nodes have private communication
channels between them. In the cryptographic model the adversary is provided
with read-only access to all the messages from the traffic between honest nodes.
The adversary may not modify the messages exchanged between honest nodes.

The cryptographic model is secure if the adversary cannot break the cryp-
tographic primitive and read the messages. The information-theoretic model is
stronger, as even a computationally unbounded adversary cannot read the mes-
sages exchanged between honest nodes.

Note, that our definitions of security are presented in the information-theoretic
model, but our real-world framework operates in the cryptographic model. We
achieve reasonable security in the real world by using AES encryption and message
authentication codes to protect the traffic between honest nodes and even allow
the adversary to add new messages to the traffic. The encryption will prevent
the adversary from reading the messages and authentication codes will help the
parties distinguish malicious messages from legal ones.

Communication between parties can be synchronous or asynchronous. In the
synchronous mode nodes have synchronised clocks which allows us to design pro-

9



tocols with rounds. Messages sent each round will be delivered before the next
round begins. The asynchronous model is more complex as it has no guarantees
on message delivery time. If we do not have guarantees for message delivery, we
cannot demand that the protocol reaches a certain step at all.

A standard way for modelling the adversary in secure multiparty computation
is by the use of malicious parties. The adversary may “corrupt” any number
of nodes before the protocol starts. In the beginning of the protocol the honest
players do not know, which nodes are corrupted and which are not.

In the case of passive corruption the adversary can read all the data held, sent
and received by the node. If the corruption is active, the adversary has complete
control over the node. If the adversary is static, then the set of corrupt nodes
remains the same for the whole duration of the protocol. The adversary may also
be adaptive and corrupt new nodes during the execution of the protocol.

We must limit the adversary to keep secure protocols possible. If all parties are
corrupt, we have no hope to complete the computation of the function. Therefore,
we restrict the adversary to corrupting only a proper subset of all the parties in
P = {P1, . . . , Pn}. To model this behaviour we define the access structure and the
adversary structure.

Given a set of parties P we call ΓP ⊂ P(P ) an access structure on P . An access
structure is assumed to be monotone if and only if ∅ /∈ ΓP and ∀B [B ∈ ΓP , B ⊆
B′ ⊆ P ⇒ B′ ∈ ΓP ]. We call A ⊂ P(P ) an adversary structure, if P(P )\A is
a monotone access structure. Intuitively, the adversary structure A contains all
possible sets of parties C that can be corrupted by the adversary. If the adversary
can corrupt a set of parties C it can also corrupt parties in all subsets of C. Also,
for each set of parties B in the access structure all supersets of B also belong to
the access structure.

2.2 Security goals and feasibility results

Our goal in this work is to build a tool for performing secure computations. The
most important security aspect for us is privacy. We want to keep the data pri-
vate from as many parties as possible. To be precise, we want to perform data
analysis without showing actual values to the analyst. Instead, we compute the
requested aggregations and provide only the results. Another aim is to build a
fast implementation of the tool, so we value efficiency in schemes and protocols.
In this section we discuss the various options for performing secure multiparty
computation.

We only consider approaches with more than one party, because providing
privacy in a scenario with a single computing party is impossible. If the adversary
takes over the party, we have lost everything. Using more than one computing
party in secure data processing is a standard approach. This is normally achieved
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by allowing the computing nodes to communicate with each other by using, for
example, a computer network.

The term multiparty computation, in fact, applies to cases where three or more
parties do the work. Two-party computation is less practical because it is less
efficient than computation with three or more parties. Usually secure and effi-
cient two-party computation schemes rely on homomorphic encryption, oblivious
transfer or some other computationally expensive primitive. Oblivious transfer
is usually built on trapdoor permutations and one-way functions [Gol04]. The
same building blocks are used in public key encryption schemes that are several
orders of magnitude slower than symmetric cryptography that can be used to build
multiparty computation systems.

To achieve a reasonable balance between security and efficiency, we work in
the semi-honest model that is also known as the honest-but-curious model. In this
model we assume that the parties follow the protocol, but they also try to compute
secret values based on the data available to them. This model suits well with our
main goal of protecting the privacy of the data.

Literature contains possibility results for multi-party computation in various se-
curity models. In their well-known works Ben-Or, Goldwasser, Wigderson [BOGW88]
and Chaum, Crépeau, Damg̊ard [CCD88] showed the existence of information the-
oretically secure general multiparty computation protocols. Both papers proved
that there exists a correct, private and robust polynomial time protocol evaluating
a function f if and only if the adversary corrupts at most k < n

3
players. However,

in the semi-honest model the number of corrupt parties k must be less than n
2
.

They also showed that these bounds are optimal and we cannot do better. Both
papers use Shamir’s secret sharing scheme to build their protocols. The differences
are in protocol construction, where Ben-Or et al rely on properties of error cor-
recting codes and Chaum et al use distributed commitments and zero-knowledge.
Ben-Or et al achieve perfect correctness while Chaum et al have a small margin
for error.

These results set the stage for our framework—we see how much security we
can achieve with a set of parties. Since every added party increases traffic, we
want to keep their number down. Moreover, every additional party also increases
the costs of protecting the system from an external attacker. Based on these
arguments, we consider a three-party secure computation scenario optimal for our
solution. In this model, we can guarantee security if more than half of the parties
are honest. In our case this means that we can allow one honest-but-curious party
in our system.
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2.3 The ideal versus real world paradigm

A common method in defining protocol security in multiparty computation is
the ideal versus real world model [Gol04]. We consider two separate worlds—the
real world where the protocol is implemented, executed, and attacked, and the
ideal world that contains the specification of the protocol’s behaviour. When the
protocol is properly described and set up in both worlds we can say that a protocol
is secure, if its output in the real world cannot be distinguished from its output in
the ideal world.

To facilitate this we need a formal framework for describing the protocol in our
ideal world. To start, the ideal world requires some incorruptible party to have
any chance of being secure at all. In this model it is the trusted third party F
that implements the ideal functionality. F always acts according to the protocol.

Ideal Functionality F

A
dv

er
sa

ry
A

0

A
dv

er
sa

ry
A

P 0
1

P 0
3

P 0
4

P2 P4

P1

P3

The ideal world The real world

P 0
2

Figure 4: Example of a ideal vs real world scenario.

Figure 4 shows a structural comparison of the ideal and real world. In this
example parties P1 and P4 are corrupted by the adversary. This means that,
in both worlds the adversary can read the input and control the output of P1

and P4, but with noticeable differences. In the ideal world all communication
passes through F whereas in the real world all communication is performed directly
between the nodes. By default, we assume that channels cannot be tapped and
messages cannot be altered or delayed in either world.

We assume that corrupt parties also follow the protocol and send their messages
in a reasonable time. Otherwise a corrupt party might just abort the protocol and
prevent everyone from computing the results. This is consistent with the other
properties of the described semi-honest model.

The interface of F consists of input and output ports for each other party and
one input and output port for the adversary. Figure 5 shows an example of F with
ports for four parties and the adversary.
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Ideal Functionality F

O2 O3 O4

I1 I2 I3 I4

IA

OA

O1

Figure 5: Example of the interface of the trusted third party F .

Each round in the ideal world has the following structure:

1. For each uncorrupted party Pk, the trusted third party F reads the corre-
sponding input from port Ik.

2. For each corrupt party P ′k, the trusted third party F reads its input from
IA—the input port of the adversary.

3. F processes the inputs and computes the outputs.

4. F outputs the results for each uncorrupted party Pk on port Ok.

5. F outputs the results for each corrupted party P ′k on port OA.

Rounds in the real world have the following structure:

1. All parties send messages to other parties according to protocol.

2. All parties receive messages.

3. Corrupted parties send all internal data including coinflips, computation
results and received messages to the adversary A.

Examples of protocol structure in both worlds are shown on Figure 6 and
Figure 7. In this setting there are two parties, P1 and P2. P1 has been corrupted
by the adversary. The adversary has total control over the communication of this
party. A protocol between nodes P1 and P2 is executed both in the real world and
in the ideal world. Both parties have an input value xi and output value yi. The
adversary has an output value yA. The trusted party has no inputs or outputs.

The protocol runs in n rounds in the real world. In the ideal world the number
of rounds m can be smaller than n and it is often preferred to keep security
proofs simple. Usually, the ideal world protocol has only one round. To compute
f(x1, . . . , xn) the parties send their inputs to the trusted third party and obtain

13



P 0
1 FA0 P 0

2

⊥ y2yA

zF→1,m

z2→F,m

zF→1,1

z2→F,1

x1

. . . . . .
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Round m z1→F,m
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Round 1 z1→F,1

zF→2,1

x1

y1

Figure 6: Structure of a protocol in the ideal world.

f(x1, . . . , xn) in reply. For an example of a protocol with one round in the ideal
world and three rounds in the real world, see Section 2.4.

Before the rounds start, the adversary learns the input of P1 because it knows
everything P1 knows. In each round the parties send one message and receive one
message. The messages are denoted zi→j,r where i is the index of the sender and j
is the index of the recipient and r is the current round. An exception to this rule
is the trusted third party, that has no index—the letter F is used instead.

Figure 6 shows how the protocol runs in the ideal world. Each round, the
trusted third party F reads all inputs, processes them and outputs the results.
Note that in the ideal model the adversary sends and receives messages on behalf
of P1. This is because P1 is corrupted and its traffic is routed through ports IA
and OA of F .

Now we will examine what goes on in the real world, see Figure 7. In the real
world P1 does its own messaging, but reports everything it learns to the adversary.
Since there is no trusted party to perform computations, the protocol must also
specify the computation of F . In either world the honest parties have no idea that
when they are communicating with P1 they are actually talking to the adversary.
F is essentially a trusted party that handles communication in the ideal world.
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yA y1 y2
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Round 1

Round n

z1→2,1

z1→2,n

x1

Figure 7: Structure of a protocol in the real world.

From the execution of the rounds it can be seen, how the adversary handles the
communication for all corrupted parties through the special ports of F .

We notice a property of the ideal versus real world paradigm—if the protocol
is correctly defined, we can use the attacks formed in the ideal world also in the
real world.

Finally, we give the definition of security for our protocols. This definition
forms the core for our security model as the security proofs for all protocols in our
framework are based on it.

Definition 2.1. A protocol π is perfectly secure, if for any adversary A in the
real world there exists A0 in the ideal world so that for any inputs x1, . . . , xn the
output distributions of A,P1, . . . , Pn and A0, P 0

1 , . . . , P
0
n coincide.
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2.4 How to simulate the real world

The outputs of the parties and the adversary must have the same distribution in
both the ideal and the real world. One way of achieving this is to use a simulator
wrapper S which translates the traffic of A to the ideal world setting, so that A
cannot distinguish its surroundings from the real world. If we just place A into the
ideal world, then it expects to receive protocol messages which are not provided in
the ideal world because the computation is performed by the trusted third party
F and each party receives only the results. The adversary A must be able to
communicate with S in exactly the same way as in the real world. From the
other side of the simulator the trusted party looks at S and A and sees the ideal
adversary A0. Figure 8 illustrates how the new ideal adversary A0 is constructed.

Ideal Functionality F

A
dv

er
sa

ry
A

P 0
1

P 0
4

P 0
2

P 0
3

Simulator

The new ideal adversary A0

wrapper S

Figure 8: Construction of the ideal adversary A0.

We will now look at some examples of constructing an ideal adversary for an
actual real world protocol. First we set the stage. Assume that we have parties
P1, P2 and P3 and they want to compute a function f(x1, x2, x3) = (y1, y2, y3). One
of the nodes—P1—is corrupted by the adversary that wants to learn the outputs
of other parties.

The first example we consider somewhat corresponds to a secret sharing sce-
nario. In the real world each node receives k messages with a uniform distribution.
The nodes give no output. Simulating this protocol is easy—the simulator gener-
ates k values with a uniform distribution and passes them to A. Since all messages
are from a uniform distribution, A has no way for distinguishing the ideal world
from the real one.

In the second generic example we have a computation protocol and we want to
make it perfectly secure. For this we need to show that the protocol corresponds
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to Definition 2.1, that is, for each real world adversary A there exists an ideal
adversary A0 so that Pr[(yA0 , y1, y2, y3)|IDEAL] = Pr[(yA, y1, y2, y3)|REAL]. One
way to achieve this is to compose the protocols so, that all messages received by
parties are independent and from a uniform distribution. This property makes the
construction of the simulator wrapper considerably easier as we demonstrate in
the following example.

Assume that we want to compute f(x1, x2, x3) = x1 + x2 + x3 = y. All values
are from the residue class ZN and all operations are performed mod N . Each
party has one uniformly distributed input value xi. The following protocol is an
instantiation of the Benaloh addition protocol [Ben86]. In the real world, each
node Pi performs the following steps:

1. Uniformly generate three values xi1, xi2, xi3 ← ZN so that xi1 + xi2 + xi3 =
xi. A simple way to do this is to generate two values xi1, xi2 ← ZN and
compute xi3 = xi − xi1 − xi2. Note, that we can also do this symmetrically
by generating any other two values of the three and computing the third
value by subtraction.

2. Send xij to party Pj

3. Compute the sum ci = x1i + x2i + x3i

4. Publish ci by sending it to other parties

5. Compute y = c1 + c2 + c3

In the following proofs we choose one party P1 and prove the result for messages
received by it. Since the protocol is symmetrical, the proofs for other parties are
similar. Note, that in the following proof we explicitly show the uniformity and
independence of protocol messages and how these properties are used to construct
the simulator.

Lemma 2.1. The presented addition protocol with three parties is correct.

Proof. To prove correctness we need to show that x1 + x2 + x3 = c1 + c2 + c3. For
that we expand the right hand side of the equation as follows:

c1 + c2 + c3 = (x11 + x21 + x31) + (x12 + x22 + x32) + (x13 + x23 + x33)

= (x11 + x12 + x13) + (x21 + x22 + x23) + (x31 + x32 + x33)

= x1 + x2 + x3 .
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Lemma 2.2. The protocol messages x21 and x31 received by P1 in step 3 are
uniformly distributed in ZN × ZN .

Proof. We know that xi1 and xi2 are generated from a uniform distribution and
xi3 is computed by modifying xi by the sum of xi1 and xi2 that is also a uniformly
distributed value. It follows that two of these values are always from a uniform
distribution and independent.

Lemma 2.3. The protocol messages c2 and c3 received by P1 in step 5 are uniformly
chosen from the set C(y, c1) = {(c2, c3) : c1 + c2 + c3 = y} for any fixed pair of step
3 messages.

Proof. The party P1 receives sums c2 = x12 + x22 + x32 and c3 = x13 + x23 + x33.
Although P1 knows the values x12 and x13 these sums are uniformly distributed, be-
cause their addends x22 and x33 are uniformly distributed in ZN×ZN for any fixed
pair of messages x21 and x31 received in the third step. According to Lemma 2.1
the protocol correctly computes the sum y and therefore (c2, c3) ∈ C(y, c1).
Theorem 2.1. The given addition protocol is correct and perfectly secure in the
semi-honest model.

Proof. The correctness was proven in Lemma 2.1. We now prove that the proto-
col is perfectly secure and for that we will again assume that the adversary has
corrupted the node P1. The simulator S knows x1 which is the the input of P1,
and the computed sum y which is provided by the trusted third party F .

The simulator S starts by simulating the behaviour of P1 and computing values
x11, x12 and x13. In the first round the adversary expects to see values x21 and
x31 from parties P2 and P3. The simulator S uniformly generates two values
x̂21, x̂31 ← ZN × ZN . The adversary A cannot distinguish the situation from the
real world, because in Lemma 2.2 we showed that all values xij, (i 6= j) received
by P1 in the first round are from a uniform distribution.

In the second round the adversary expects to see values c2 and c3 from other
parties. The simulator computes c1 = x11 + x21 + x31 and proceeds by uniformly
generating ĉ2 and computing ĉ3 = y−c1−ĉ2. This way we have uniformly generated
two values from C(y, c1). Again, the adversary cannot distinguish between values
it receives in the ideal world from those it receives in the real world, because also
according to Lemma 2.3 these values are from a uniform distribution and give the
expected sum.

The simulator S can now run the adversary A and pass the computed values
to it and because A cannot distinguish the messages given by S from the messages
it receives in the real world, its output cannot be distinguished from what it gives
in the real world. We have constructed a suitable simulator S and thus proven the
theorem. The cases for parties P2 and P3 are similar because of the symmetry of
the protocol.
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Corollary 2.1. If at any moment in our protocol we have securely computed c1 +
c2 + c3 = f(x1, x2, x3) so that c1, . . . , c3 are chosen uniformly from the set C(y) =
{(c1, c2, c3) : c1 + c2 + c3 = y}, we can publish c1, . . . , c3 to compute f .

Proof. The scenario describes exactly the situation we encountered in the proof of
Theorem 2.1. To build the simulator for party P1 we uniformly generate c2 ← ZN

and then compute c3 = y − c1 − c2. The other cases are symmetrical.

This result is an important building block for protocol construction. We have
reduced computing any f to computing additive shares of it.
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3 Homomorphic secret sharing

3.1 Concept of secret sharing

Secret sharing is a technique for protecting sensitive data, such as cryptographic
keys. It is used to distribute a secret value to a number of parts—shares—that
have to be combined together to access the original value. These shares can then be
given to separate parties that protect them using standard means, e.g., memorize,
store in a computer or in a safe. Secret sharing is is used in modern cryptography
to lower the risks associated with compromised data.

Sharing a secret spreads the risk of compromising the value across several
parties. Standard security assumptions of secret sharing schemes state that if an
adversary gains access to any number of shares lower than some defined threshold,
it gains no information of the secret value. The first secret sharing schemes were
proposed by Shamir [Sha79] and Blakley [Bla79].

Our interest in secret sharing is inspired by its usefulness in secure multiparty
computation. Secret sharing directly helps us in preserving the privacy of our data.
In this chapter we explore secret sharing to determine its versatility for us in a
computing environment. We are mostly interested in the possibility of performing
operations with shares so we do not have to reconstruct original values all the
time.

Definition 3.1. Let s be the secret value. An algorithm S defines a k-out-of-n
threshold secret sharing scheme, if it computes S(s) = [s1, . . . , sn] and the following
conditions hold [Sha79, Dam02]:

1. Correctness: s is uniquely determined by any k shares from {s1, . . . , sn}
and there exists an algorithm S′ that efficiently computes s from these k
shares.

2. Privacy: having access to any k−1 shares from {s1, . . . , sn} gives no infor-
mation about the value of s, i.e., the probability distribution of k − 1 shares
is independent of s.

A secret sharing scheme is homomorphic if it is possible to compute new valid
shares from existing shares.

Definition 3.2. Let s and t be two values and [[[s]]] = [s1, . . . , sn] and [[[t]]] =
[t1, . . . , tn] be their shares. A secret sharing scheme is (⊕,⊗)-homomorphic if
shares [(s1 ⊗ t), . . . , (sn ⊗ t)] uniquely determine the value s⊕ t.

If individual shares are from a uniform distribution it can be shown that secret
sharing is secure in a multiparty computation setting. Indeed, the protocol is
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simple—one party sends values from a uniform distribution to other parties in
the system. In the ideal world this means the trusted third party F outputs
nothing. The simulator is easy to build—it just generates a value from a uniform
distribution and passes it to the adversary. Again, the values are from the same
distribution and the adversary cannot distinguish between them.

To illustrate the concept of secret sharing, we use the following classical ex-
ample [Sha79]. Assume that there is a corporation where the management needs
to digitally sign cheques. The president can sign cheques on his or her own, the
vice presidents need at least another member of the board to give a signature and
other board members need at least two other managers to sign a cheque.

We can solve this problem by sharing the secret key needed for giving a sig-
nature with a 3-out-of-n threshold secret sharing scheme, where n is the required
number of shares. We give the company president three shares, so he or she can
sign cheques alone. Vice presidents get two shares each, so that they need the
agreement of another manager to give a signature. Other members of the board
get one share per member, so that three of them are needed for a signature.

The signing device is completely secure as it does not contain any secret infor-
mation. It requires the members of the board to provide three shares to retrieve
the signature key. This key is used for a single signature and then forgotten so the
next signature will again require three shares of the key. If a malicious adversary
coerces one manager to sign a cheque, then it has to be the president of the cor-
poration. Otherwise the adversary will have to persuade more than one member
of the board.

This example naturally leads us to the notion of threshold signature schemes
that allow us to compute a signature without reconstructing the key itself. The no-
tion was introduced by Desmedt [Des88] and various signature schemes have been
proposed that do not require the presence of a key but only parts of it. Examples
include threshold variants of ElGamal and RSA signature schemes presented by
Desmedt and Frankel [DF89] and Shoup [Sho00].

3.2 Mathematical foundations of secret sharing

3.2.1 Polynomial evaluations

We start by describing some basic properties of polynomials. Let us consider a
ring R and denote the set of all polynomials over R by R[x]. Let f(x) = f0 +f1x+
· · · + fkx

k be a polynomial in R[x]. We also fix a vector a = [a0, . . . , an] ∈ Rn

so that all values ai are different and nonzero. Then we define the polynomial
evaluation mapping eval : R[x] → Rn. as follows. We evaluate the polynomial
f(x) on the vector a and present the result as a vector.

eval(f) := [f(a0), . . . , f(an)]T .
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In the following theorem operations between vectors in Rn are defined elementwise.
That is, if u, v ∈ Rn and ⊕ is a binary operator, then:

u⊕ v := [(u1 ⊕ v1), . . . , (un ⊕ vn)]T .

Theorem 3.1. For any two polynomials f and g in R[x] and a scalar value r ∈ R
the following conditions hold:

(i) Additivity: eval(f + g) = eval(f) + eval(g).

(ii) Multiplicativity: eval(f · g) = eval(f) · eval(g).

(iii) Multiplicativity w.r.t. scalar values: eval(r · f) = r · eval(f)

The mapping eval is a linear transformation.

Proof. The conditions hold because of the duality with the respective polynomial
operations:

(i) Additivity: (f + g)(a) = f(a) + g(a)

(ii) Multiplicativity: (f · g)(a) = f(a) · g(a)

(iii) Multiplicativity w.r.t. scalar values: (r · f)(a) = r · f(a)

The conclusion that the mapping is a linear transformation directly follows from
the above conditions. Thus we have shown that eval is a linear mapping between
the evaluation positions of the polynomial and the result vector.

We will now give a further analysis of the properties of this mapping. Let
~f = [f0, . . . , fk] be the array of coefficients of the polynomial f . Note that in
further discussion we consider a polynomial f being equivalent to the vector of its
coefficients.

We now compute the vector ~y = eval(f) = [f(a0), . . . , f(an)]T .

~y =
k∑

i=0

fieval(xi) =
k∑

i=0

fi

[
ai

0, . . . , a
i
n

]T

= f0


1
1
...
1

+ f1


a0

a1
...
an

+ · · ·+ fk


ak

0

ak
1
...
ak

n

 =


f0 + f1a0 + · · ·+ fka

k
0

f0 + f1a1 + · · ·+ fka
k
1

· · ·
f0 + f1an + · · ·+ fka

k
n

 .
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We notice that the vector ~y is actually the product of a matrix and another vector.
f0 + f1a0 + · · ·+ fka

k
0

f0 + f1a1 + · · ·+ fka
k
1

· · ·
f0 + f1an + · · ·+ fka

k
n

 =


1 a0 a2

0 · · · ak
0

1 a1 a2
1 · · · ak

1
...

...
...

. . .
...

1 an a2
n · · · ak

n

×

f0

f1
...
fk

 . (1)

We denote the matrix by V and notice that the vector on the right side is the vector
~f of polynomial coefficients. This way we can rewrite equation (1) as follows:

~y = V ~f .

This shows that the evaluation mapping between the coefficients f0, . . . , fn and
evaluations f(a0), . . . , f(an) of a polynomial is a linear tranformation determined
by the matrix V .

3.2.2 Reconstructing the polynomial

If k = n then the matrix V is a (k + 1)× (k + 1) square matrix. A matrix in this
form is known as the Vandermonde matrix. It’s determinant is equal to [Kil05,
page 147]

∆(V ) =
∏
i,j
i>j

(ai − aj) .

We need the evaluation mapping to be reversible and for this we need to show
that the matrix V is invertible. A matrix is invertible, if it is regular that is,
its determinant is invertible [Kil05, page 143]. We have defined the values of
a0, . . . , an to be distinct so the differences (ai − aj) in the given sum are nonzero.
To achieve that the product of the differences is nonzero it is enough to make sure
that the ring has no zero divisors. For that reason we require from now on that R
is a field, since fields have no zero divisors. With this assumption we ensure that
∆(V ) is invertible and therefore V is invertible, if all values ai are distinct. This
in turn confirms that the transformation provided by V is also invertible and we
can express f by using the inverse of V .

~f = V −1~y

We will now show, how to reconstruct the polynomial f from its evaluations. We
define vectors ~ei as unit vectors in the form

[
e0 . . . en

]
.

~e0 =
[

1 0 . . . 0
]

~e1 =
[

0 1 . . . 0
]

. . .

~en =
[

0 0 . . . 1
]
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Let ~bi be such that

~ei = V~bi. (2)

Because of the properties of V we showed earlier we can rewrite equation (2) and

express ~bi as follows.
~bi = V −1~ei .

Noting that

~y =
n∑

i=0

yi~ei

we see that we can reconstruct ~f from evaluations as follows

~f =
n∑

i=0

V −1yi~ei =
n∑

i=0

yi
~bi .

It follows that we can reconstruct the coefficients of the polynomial f , if we have
access to its evaluations at n+1 positions and the vectors ~bi and therefore we have
constructively proved the well-known Lagrange interpolation theorem.

Theorem 3.2 (Lagrange interpolation theorem). Let R be a field and a0, . . . , an,
y0, . . . , yn ∈ R so that all values ai are distinct. Then there exists only one poly-
nomial f over R so that degf ≤ n and f(ai) = yi, (i = 0, . . . , n).

The Lagrange interpolation polynomial can be computed as the sum

f(x) = y0b0(x) + · · ·+ ynbn(x)

where the base polynomials bi(x) are defined as

bi(x) =
n∏

j=0
i 6=j

(x− aj)

(ai − aj)
.

As one could expect, the Lagrange interpolation polynomial has a useful property—
its base polynomials correspond to our vectors ~bi:

eval(bi) =
[
bi(a0) . . . bi(an)

]T
Since

bi(aj) =

{
0, if i 6= j
1, if i = j

we see that
eval(bi) = ~ei .
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We also have to handle the cases where k 6= n. We will reduce these cases to the
(k + 1) × (k + 1) case observed before. First we consider the case where n > k.
If we choose k + 1 different values l0, . . . , lk ∈ {0, . . . , n}, then we obtain a virtual
matrix V ′ by choosing rows l0, . . . , lk from the original matrix V :

V ′ =


1 al0 a2

l0
· · · ak

l0

1 al1 a2
l1
· · · ak

l1
...

...
...

. . .
...

1 alk a2
lk
· · · ak

lk

 .

The square matrix V ′ is invertible as its determinant is nonzero, because it corre-
sponds to the evaluation map at [al0 , . . . , alk ] and by showing that we have reached
the previously observed and proved case. In the third case when n < k we gener-
ate k − n values an+1, . . . , ak so that all values ai are distinct. We use these new
positions to add rows to the matrix V and get the virtual matrix V ′

V ′ =



1 a0 a2
0 · · · ak

0

1 a1 a2
1 · · · ak

1
...

...
...

. . .
...

1 an a2
n · · · ak

n

1 an+1 a2
n+1 · · · ak

n+1
...

...
...

. . .
...

1 ak a2
k · · · ak

k


.

This matrix V ′ is an invertible (k+ 1)× (k+ 1) square matrix that can replace V
in the first observed case. Note that if n < k the reconstruction of the polynomial
is not unique and is determined by the choice of values an+1, . . . , ak. This gives us
a guarantee that it is not possible to uniquely reconstruct the polynomial if there
are not enough pairs of positions and evaluations available. Later we will use this
property to prove privacy of the following secret sharing scheme.

3.3 Shamir’s secret sharing scheme

We now describe Shamir’s secret sharing scheme that is based on polynomial eval-
uations [Sha79]. We start by explaining the infrastructure of secret sharing. The
central party is the dealer that performs share computation operations on input
secrets and distributes the resulting shares to other parties. When the secret has to
be reconstructed, the parties give their shares to the dealer, that can then combine
the shares and retrieve the secret.

In Shamir’s scheme shares are evaluations of a randomly generated polynomial.
The polynomial f is generated in such a way that the evaluation f(0) reveals
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the secret value. If there are enough evaluations, the parties can reconstruct
the polynomial and compute the secret. Algorithm 1 describes how shares are
computated in Shamir’s scheme.

Algorithm 1: Share computation algorithm for Shamir’s scheme

Data: finite field F, secret data s ∈ F, threshold k, number of shares n
Result: shares s1, . . . , sn

Set f0 = s
Uniformly generate coefficients f1, . . . , fk−1 ∈ F
Construct the polynomial f(x) = f0 + f1x+ · · ·+ fk−1x

k−1

Evaluate the polynomial: si = f(i), (i = 1, . . . , n)

Note that the indices of the shares start from one, as we cannot output s0 =
f(0), because it is the secret value. The resulting shares s1, . . . , sn can be dis-
tributed to their holders. If the original value needs to be retrieved, we need a
subset of at least k shares. Note that it is important to store the index i together
with the share si, because it is later needed for reconstruction.

The classical algorithm of Shamir’s scheme reconstructs the whole polynomial,
whereas we describe versions optimised for reconstructing only the secret f(0) = s.
We only need to compute f(0) so for our purposes we can simplify the base poly-
nomials bi(x) as follows:

βi = bi(0) =
k∏

j=1
i 6=j

(−aj)

(ai − aj)
. (3)

If the shares are computed using Shamir’s scheme then algorithm 2 retrieves the
secret value s.

Algorithm 2: Share reconstruction algorithm for Shamir’s scheme

Data: finite field F, shares st1 , . . . , stk ∈ F where tj ∈ {1, . . . , n} are
distinct indices

Result: secret data s
compute the reconstruction coefficients βi according to equation (3)
compute f(0) = st1βt1 + · · ·+ stkβtk

Return s = f(0)

Theorem 3.3. Shamir’s secret sharing scheme is correct and private in the sense
of Definition 3.1.

Proof. Correctness follows directly from the properties of Lagrange interpolation.
The indices and shares are really positions and values of the polynomial and thanks
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to the properties of Lagrange interpolation they uniquely determine this polyno-
mial. The algorithm for finding the polynomial is also efficient, as it consists of
polynomial evaluations.

Note that we have considered secret polynomials of degree n. To continue doing
this we must note, that such polynomials are achieved in a (n+ 1)-out-of-(n+ 1)
instantiation of Shamir’s secret sharing scheme. For this reason the following proof
is given for a (n+ 1)-out-of-(n+ 1) secret sharing scheme.

To prove security of the scheme we show that the shares are from a uniform
distribution and revealing n shares to an adversary does not give it any information
about the secret value. We do this by creating a situation where one share is
missing at reconstruction. We transform the matrix V by removing any one row
from it. Then we separate the first column of ones to create the vector 1 that
consists of n ones and get a n × n matrix A. We can now express the vector of
shares ~y′ as follows:

~y′ = 1f0 + A~f ′ (4)

where
~f ′ =

[
f1 . . . fn

]T
.

The vector ~y′ represents n shares and the vector 1f0 =
[
f0 . . . f0

]T
contains

the secret values f0. We notice that A~f ′ is uniform, because values fi in the vector
~f ′ are coefficients of the secret polynomial and were generated from a uniform
distribution. Because the values ai are different nonzero values, the determinant
of A is nonzero and the matrix A is invertible. It follows that A defines a bijective
transformation—for any vector ~f ′ the matrix A transforms it to exactly one vector.
Hence, A~f ′ has a uniform dstribution, since ~f ′ has a uniform distribution.

Using this property we can show that ~y′ is from a uniform distribution, because
if we add a vector A~f ′ that has uniformly distributed values to a non-random vector
1f0 we get a vector from a uniform distribution. The equation (4) shows us that
combinations of n shares are from a uniform distribution and therefore give no
information about the secret value. This means the adversary cannot do better
than guess the missing share, but all guesses are equally probable.

The proof for a (k + 1)-out-of-(n + 1) is reduced to the (n + 1)-out-of-(n + 1)
case as follows. We note that in a (k + 1)-out-of-(n+ 1) scheme degf = k, which
means that

~f ′ =
[
f1 . . . fk

]T
.

The matrix V contains n+ 1 columns and n+ 1 rows from which we select k rows
to form a (k+ 1)× k matrix V ′. This simulates the situation when we have only k
shares available at reconstruction and reduces the problem to the already proved
(n+ 1)-out-of-(n+ 1) case, because we can now separate the column of ones from
V ′ and construct the k× k matrix A. This allows us to follow the same discussion
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as in the (n+ 1)-out-of-(n+ 1) case and prove that k shares reveal nothing about
the secret in a (k + 1)-out-of-(n+ 1) scheme.

3.4 Secure computation with shares

We will now show what can be done with the shares once they have been dis-
tributed. We will investigate the possibility of using the homomorphic property of
the secret sharing scheme to perform operations with the shares. In the following
assume that a k-out-of-n threshold scheme is used. Assume that we have n parties
P1, . . . , Pn and the dealer gives each one of them a share according to its index.
Addition. Assume that we have shared values [[[u]]] = [u1, . . . , un] and [[[v]]] =
[v1, . . . , vn]. Because the evaluation mapping is a linear transformation, we can
add the shares of [[[u]]] and [[[v]]] to create a shared value [[[w]]] so that u+ v = w. Each
party k has to run the protocol given in Algorithm 3 to add two shared values.

Algorithm 3: Protocol for adding two Shamir shares for node k

Data: shares uk and vk

Result: share wk that represents the sum of [[[u]]] and [[[v]]]
Round 1

wk = uk + vk

Multiplication with a scalar. Assume that we have a shared value [[[u]]] =
[u1, . . . , un] and a public value t. Again, thanks to the linear transformation prop-
erty of the evaluation mapping we can multiply the shares ui with t so that the
resulting shares represent the value [[[w]]] = t[[[u]]]. Algorithm 4 shows the protocol
for multiplication a share value by a scalar.

Algorithm 4: Protocol for multiplying Shamir shares by a scalar value for
node k

Data: shares uk and a public value t
Result: share wk that represents the value of t[[[u]]]
Round 1

wk = tuk

Multiplication. Assume that we have shared values [[[u]]] = [u1, . . . , un] and [[[v]]] =
[v1, . . . , vn]. Share multiplication, unfortunately, cannot be solved with the linear
property of the transformation, as multiplying two polynomials with the same
degree gives a polynomial with double the degree of the source polynomials. This
means that we must use a k-out-of-n threshold scheme where 2k ≤ n and the
polynomials must have a degree of at most 2k. By multiplying the respective
shares, the miners actually compute a share that represents the polynomial storing
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the the product of the secrets. However, we must reconstruct the secret stored in
the product polynomial and reshare it to make further multiplications possible.
Otherwise, the multiplication of the product polynomial with another one will
give us a polynomial with a degree larger than n and we cannot reconstruct the
secret from such polynomials anymore.

We note that we can precompute the values of the optimised base polynomials
βi needed in the protocol by using equation (3) on page 27. This requires each
node to know its number and also how many other nodes are there, but that is a
reasonable assumption. Algorithm 5 gives the complete protocol for multiplying
Shamir shares.

Algorithm 5: Protocol for multiplying two Shamir shares for node i

Data: shares ui and vi, precomputed value βi

Result: share wi that represents the value of [[[u]]][[[v]]]
Round 1

zi = uiviβi

Share zi to zi1 , . . . , zin using the same scheme as the dealer uses
Send to each other node Pl, i 6= l the share zil

Round 2

Receive shares zji, j 6= i from other nodes
wi = zii +

∑n
j=1
j 6=i

zji

Theorem 3.4. The share multiplication protocol is correct.

Proof. The protocol is based on the observation that in Shamir’s secret sharing
scheme the value is stored in the constant term of the polynomial and if we multiply
two polynomials, the constant term of the resulting polynomial stores the product
of secrets. In the first round of the protocol we multiply our shares of the two
polynomials and use the precomputed base polynomials βi(0) from (3) to compute
an element of the sum in Shamir’s reconstruction algorithm shown in Algorithm 2.
Basically, each miner computes its share of the reconstruction formula for the
product and then distributes it to the other miners as shares. Each miner can add
the received shares because the scheme is additive. As a result each miner has a
share of the product of u and v.

Theorem 3.5. The share multiplication protocol is perfectly secure in a semi-
honest model with three parties.

Proof. We present a sketch for the security proof in a scenario with three parties
for easier understanding. The proof can be extended to support more than three
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parties. The security of the multiplication protocol is based on the security of local
computations and the security of Shamir’s scheme that was proved in Theorem 3.3.

We prove that the protocol is secure by showing that the messages received by
one party are uniformly distributed. Then we can build the necessary simulator
using the technique shown in Theorem 2.1. We show security for one party as the
other cases follow trivially because the protocol is symmetrical.

The party P1 receives two values: z21 and z31 that are shares of z2 and z3

respectively. Since Shamir’s scheme is private, P1 can learn nothing about values
z2 and z3 from these shares. The values z21 and z31 are also independent as they
have been formed by two independently executed share distributions performed
by P2 and P3.

3.5 Generalised secret sharing

We showed how to build a secret sharing scheme on a linear transformation rep-
resenting polynomial evaluations. We now go further and discuss connections be-
tween secret sharing and classical coding theory. Figure 9 illustrates the similarity
of coding and secret sharing. Both transform an input value to an intermediate
format and later reconstruct it to retrieve the original value.

[x1, x2, . . . , xn]

input x Encoder

input x Sharing

output xDecoder

Basic secret sharing pipeline

Basic coding pipeline

[
x1 x2 . . . xn

]
output xReconstruction

Figure 9: Comparison of the basic pipelines of secret sharing and coding.

Standard coding schemes have encoding and decoding procedures that corre-
spond to share computation and reconstruction operations in secret sharing. The
following scheme represents a generic randomised coding scheme.

Encode(x0) = A


x0

x1
...
xk

 , where x1, . . . , xk ← Zp

Decode(y1, . . . , yn) = 〈β, y〉 = βTy =
n∑

i=1

βiyi

where β = [β1, . . . , βn] is the reconstruction vector.
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For example, if A is a Vandermonde matrix then the vector ~β corresponds
to the evaluations of base polynomials βi = bi(0) in the Lagrange interpolation
formula.

The output of the encoding algorithm can be interpreted as shares. In se-
cret sharing the access structure specifies which parties can reconstruct the value.
The corresponding operation in coding theory is recovering from deletion errors.
In coding theory we may learn something about the original value even if some
codewords are missing. Secret sharing requires an all-or-nothing approach where
having less than the sufficient number of shares provides no information about the
original value,

Coding theory also allows recovering from errors and detecting the codeword
that was damaged during transmission. Similarly, verifiable secret sharing allows
us to detect if a share has been modified and identify the dishonest party in the
system. In both cases there are limits to how many errors there can be before
we cannot decode the value from codewords or detect the cheater in a secret
sharing scheme. It has been shown that secret sharing is a special case of linear
coding [MS81].

To give an example of a verifiable secret sharing scheme we slightly modify the
generic randomised coding scheme presented above. For an input value x0 let us
define the input vector ~x as follows:

~x =
[
x0 . . . xk xk+1 . . . xl

]T
,

where x1, . . . , xk ← Zp and xk+1, . . . , xl = 0. Now we can define the scheme.

Encode(x0) = A~x

Decode(y1, . . . , yn) = 〈b, y〉

Verify(y1, . . . , yn) =

{
true, if xk+1, . . . , xl in the restored ~x are zeroes,
false, otherwise.

To reconstruct the original value after the adversary has corrupted one or more
shares is possible, if we have enough honest parties, i.e., uncorrupted shares. We
note, that if all parties are honest, any set of shares with cardinality equal or above
the threshold value will be able to reconstruct the same polynomial. Now, if some
parties provide corrupted shares we will have to reconstruct all possible polynomi-
als to see, which shares make the polynomials mismatch with the correct ones. It
is easy to see, that this task is not trivial and requires a lot of reconstructing and
verification of secrets together with the analysis of the achieved results.
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4 A framework for secure computations

4.1 Introduction and goals

In this chapter we give a detailed description of our solution for performing secure
data aggregation. First, we list our design goals considered when deciding the
features of the system. We wanted to build a theoretical framework for designing
secure data processing applications and our main design goal was efficiency and
ease of use. We also wanted to build a programming platform that could be used to
make development of secure computations software easier. Thus we had to create
a the theoretical framework that provides us with security guarantees without
sacrificing real-world performance.

We start describing our framework by listing the types of parties and explain-
ing their model of communication. Then we build the mathematical foundations
for the protocols by describing the value space and the secret sharing scheme.
Based on the infrastructure and the mathematical concepts we assess the security
model of the system. Finally, we present protocols for basic operations like adding,
multiplying and comparison along with their proofs of security.

4.2 Mathematical foundations

We require all elements of the data to be values in Z232 . Note that Z232 is not a finite
field with respect to integer addition and multiplication. We prefer this approach,
because there are platforms and programming languages where operations in Z232

are natively available. That is, the computer natively performs arithmetics mod
232. This allows us to have an implementation with efficient computations and
rapid development.

We use the simple and efficient n-out-of-n additive secret sharing scheme. Se-
cret values and shares are stored in Z232 which allows for fast secret sharing oper-
ations. Algorithm 6 describes how shares are computed in the additive scheme.

Algorithm 6: Share computation algorithm for the additive scheme

Data: secret data s ∈ Z232 , number of shares n
Result: shares s1, . . . , sn

Uniformly generate values s1, . . . , sn−1 ∈ Z232

sn = s− s1 − · · · − sn−1

Note, that Algorithm 6 can be rearranged so that any share si is computed by
subtraction in the final step. This is useful to know if we have to show that any
n− 1 shares are uniformly generated.
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Algorithm 7 shows how to reconstruct the original value from additive shares.

Algorithm 7: Share reconstruction algorithm for the additive scheme

Data: shares s1, . . . , sn ∈ Z232

Result: secret data s
s = s1 + · · ·+ sn

We now give the security proof for the additive scheme.

Theorem 4.1. The secret sharing scheme is correct and private in terms of Def-
inition 3.1.

Proof. Correctness is trivial, as the reconstruction algorithm is both efficient and
determines the secret uniquely. To show privacy we note, that the share generation
process shown in Algorithm 6 assures, that values s1, . . . , sn are uniformly chosen
from the set S(s) = {(s1, . . . , sn) : s1 + . . . ,+sn = s mod 232}. Now observe,
that due to symmetry we can sample S(s) by choosing a value 1 ≤ i ≤ n, then
generating s1, . . . , si−1, si+1, . . . , sn ← ZN and finally computing si = s−s1−· · ·−
si−1 − si+1 − · · · − sn.

Theorem 4.2. For any two shared values [[[u]]] and [[[v]]] and a scalar value r ∈ Z232

the following conditions hold:

i Additivity: [[[u+ v]]] = [[[(u1 + v1), . . . , (un + vn)]]].

ii Multiplicativity w.r.t. scalar values: r[[[u]]] = [[[ru1, . . . , run]]].

Both properties follow directly from the construction of the scheme. It follows
that this secret sharing scheme is (+,+)-homomorphic with respect to addition
and (×,×)-homomorphic with respect to multiplication by scalar. Unfortunately,
it is not multiplicative, as it is easy to construct counter-examples that show that
[[[uv]]] 6= [[[(u1v1), . . . , (unvn)]]]. Due to this restriction we have to solve multiplication
differently. We give a suitable protocol later in Section 4.5.3.

4.3 The infrastructure

We will now describe the infrastructure of our solution. We have three central com-
puting parties M1,M2 and M3 called miners. Their job is to perform computations
and run data mining algorithms on the data. Each miner is aware of its index—1,
2 or 3. The other nodes in the system are controllers C1, . . . , Cn that send data to
the miners and request analysis results from them. There is no theoretical limit to
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the number of controllers n. Controllers may have different functionalities—some
might only provide data while the others may request analysis results.

We have communication channels between all the miners so they can run secure
multy-party computation protocols. It is assumed that all parties in the system
belong to a a public key infrastructure so all nodes in the system are capable of
running public key encryption and signing. This is not necessary for communica-
tion between the parties but it allows us to receive encrypted data from arbitrary
clients. Symmetrical encryption and authentication codes are used in the traf-
fic between parties to achieve security described in the cryptographic model of
communication.

Figure 10 illustrates the deployment of miners and their communication with
both the controller and the other miners.

Miner 3

Miner 1

Miner 2
Data analysis

algorithms

Controller

Figure 10: The communication channels between miners and the controller.

Each controller must connect to all three miners to perform operations. The
reason for this is security—data needs to be secret-shared as soon as possible to
minimize the risk of compromising it. Each controller acts as a dealer in the
context of a secret sharing scheme. If data needs to be sent to the miners, the
controller distributes it into shares and sends each share to one miner. As a result,
the data is separated into three parts, all of which must be combined to recreate
the original values.

We now describe a secure method for non-interactive data collection that re-
quires a central encrypted data repository. The repository is a public database
accessible to all miners and controllers—the controllers write to it and the miners
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read from it. If a controller has new data to send to the miners it forms an p× q
matrix D which contains the data. Then it generates three AES keys k1, k2, k3

and encrypts them by using the miners’ public keys. The encrypted keys are sent
to the respective miners M1, M2 and M3.

Now let c : Zp × Zq → Zpq be an injective transformation. For each ma-
trix element Dij, i = 1, . . . , p, j = 1, . . . , q, the controller computes three values
e1,ij, e2,ij, e3,ij by encrypting the value c(i, j) with each of the three generated keys
k1, k2 and k3. Then it publishes the values sij = Dij + e1,ij + e2,ij + e3,ij by storing
them in the central repository.

The miners retrieve the values sij and use the received AES key to compute
the values e∗,ij. Each miner now knows sij and one of the values e∗,ij. Based on
this they compute additive shares of Dij as follows:

(i) The first miner’s share is (Sij − e1,ij),

(ii) The second miner’s share is (−e2,ij),

(iii) The third miner’s share is (−e3,ij).

It is easy to see the the shares represent the value Dij.
A note about implementing this scheme: since AES provides us with values in

Z2128 while our data might be represented with less bits, we have to either lose the
superfluous bits from AES or use each AES block for sharing more than one value.
This is easy to do, if the values are powers of two, for example, elements in Z2,
Z28 and so on.

This structure minimises source data exposure. In an ideal scenario, we run
a survey electronically and give each person who is answering questions a digital
survey built upon a controller node. This way no-one but the author can see the
answers, because the miners only return aggregation results. The miners will have
to make use of microdata protection methods to make sure that aggregation results
do not reveal too much information about the original data.

The miners can run a number of basic operations like arithmetic and data ma-
nipulation. More complex algorithms are built from these basic operations. When
a controller wants the miners to run an algorithm, it sends the program code to
the miners in an assembly-like format. The miner can verify the code to ensure
that it does not compute anything that would compromise privacy. The miners
then execute the code by running each basic operation until the final results are
computed. The controllers see only the final results of the computation, intermedi-
ate results are kept by the miners for security reasons. To ensure the authenticity
of the code, we require the controllers to sign the code they send to the miners.
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4.4 Security model

We have three miners and any number of controllers. The controllers are sources
of data and consumers of data mining results. If all controllers collaborated, they
could put together the original dataset because they have access to the source
data. We assume that the data providers are concerned with the privacy of their
data, otherwise no method or technology can prevent them from distributing it
freely. In our security goals we concentrate on the miners that in real-life scenarios
hold all of the data and have lots of time to work on it.

We use the additive secret sharing scheme to distribute data between the three
miners. Input data is distributed into three shares and each party has one share of
each original value. Note that we can prevent malicious or unfair share distribution
by the controller by using share conversion protocols to retain the secret value but
change the shares. To enforce a range on input shares we may convert them by
removing the extra bits. For example, for one-bit inputs we will just use the first
bit of each share as the additive scheme provides correct reconstruction for Z2.
Since our protocols require uniformity in Z232 we will then have to convert these
shares back to shares in Z232 . This is still better and more efficient than requiring
zero-knowledge proofs from the clients.

We have three miners in a secure multiparty computation setting with bidirec-
tional communication channels. We perform computations synchronously—basic
operations are run simultaneously on all miners and we also expect basic operations
to complete before a certain time bound. We allow all parties to be semi-honest—
they have to follow the protocol, but they can be curious about the data. We
provide security only if the adversary corrupts at most one party of the three
which means that no two parties can collaborate.

To prove security of our protocols we have to show that all messages received
by a any fixed party are uniformly distributed and independent. This allows us to
prove that if the adversary corrupts one party, it is sent only uniformly distributed
values that give it no information about the secret values. With the properties of
uniformity and indepence it is trivial to build the necessary simulators which are
required for perfect security of the protocols.

We have designed the protocols to be symmetrical with minor exceptions.
Mostly each miner performs the same operations, just with different values. We
use this property in security proofs to show that one miner receives only uniformly
distributed independent messages and reuse this proofs for the other two miners.
Our protocols use each other as sub-protocols. Such compositions of protocols are
also perfectly secure [Dam02, page 8].

Note that at the end of our protocols each party holds an additive share of
the final result. These shares must be from a uniform distribution, because then,
according to corollary 2.1 we can publish them without compromising security.
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This means that after completing the protocol the parties can send their shares to
a controller that can reconstruct results of the computation. Note that this is not
necessary, if the shares are only used by the miners later on and this could save
us from sending some messages in the presented protocols. However, to maintain
generality the presented protocols conform to this requirement.

4.5 Protocols for basic operations

4.5.1 Prerequisites and definitions

We now describe the protocols for performing basic arithmetic operations. Each
operation works on shared values and outputs also shared values. At no point
are the original secret values reconstructed during the execution of protocols. The
input parameters are described together with each algorithm.

We present these protocols as algorithms run simultaneously by three miners
M1, M2 and M3. For easier reference we call them Alice, Bob and Charlie, respec-
tively. We use the following common notations in protocol descriptions. We use
[[[x]]] to denote a value that is shared between the miners using the simple additive
secret sharing scheme. The respective shares are xA, xB and xC where the indices
specify the party holding the share. A stands for Alice, B for Bob and C for Char-
lie. Messages in the protocol are denoted varxy where x ∈ {1, 2, 3} is the index
of the sending party and y ∈ {1, 2, 3}, y 6= x is the index of the receiving party.
Note, that var may consist of more than one letter and still denote a single value
and not a multiplication. In the case of a possible ambiguity we use the · operator
to specify multiplication.

4.5.2 Addition and multiplication by scalar

Given input values [[[u]]] and [[[v]]], we want to compute [[[u+ v]]]. We showed that the
secret sharing scheme is homomorphic with respect to addition and multiplication
by scalar so we can do these operations locally in one round. Algorithm 8 gives
the protocol for adding two additively shared values.

Algorithm 8: Protocol for adding two additive shares

Data: values [[[u]]] and [[[v]]]
Result: the sum [[[u+ v]]]
Round 1

Alice computes (u+ v)A = uA + vA

Bob computes (u+ v)B = uB + vB

Charlie computes (u+ v)C = uC + vC
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Given input value [[[u]]] and a scalar r we want to compute r[[[u]]]. Algorithm 9
shows the protocol for multiplying additively shared data by a scalar value.

Algorithm 9: Protocol for multiplying additive shares by a scalar value

Data: value [[[u]]] and a scalar r
Result: the product [[[u′]]]
Round 1

Alice computes u′A = r · uA

Bob computes u′B = r · uB

Charlie computes u′C = r · uC

4.5.3 Multiplication

Given input values [[[u]]] and [[[v]]] we want to compute [[[uv]]]. Since we showed that the
secret sharing scheme is not homomorphic with respect to multiplication, we need
to build a protocol to perform the computation. The idea behind the algorithm
was introduced by Du and Atallah [DA00, page 11]. Namely, assume that two
parties P1 and P2 want to multiply values x1 and x2 without anyone else knowing
x1 or x2. They notice, that

(x1 + α1)(x2 + α2) = x1x2 + α1(x2 + α2) + α2(x1 + α1)− α1α2,

which allows us to express the product x1x2 as follows:

x1x2 = (x1 + α1)(x2 + α2)− x1(x2 + α2)− x2(x1 + α1) + α1α2 . (5)

Now assume that P1 has uniformly chosen α1 ← ZN and P2 has independently
uniformly chosen α2 ← ZN . Then the sums x1+α1 and x2+α2 are also independent
and from a uniform distribution which means that they can be sent as protocol
messages without leaking data. However, P1 and P2 still cannot compute x1x2

because they do not have the product α1α2. For completing the protocol they
need a third party P3 that generates the values α1 and α2 and therefore knows
α1α2. By combining the available values the parties can now compute shares of
x1x2. The respective protocol consists of the following steps:

1. The party P3 uniformly generates α1, α2 ← ZN and sends α1 to P1 and α2

to P2.

2. P1 computes x1 + α1 and sends the result to P2. At the same time P2

computes x2 + α2 and sends the result to P1.
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3. Now the parties have enough information to compute shares of the product
x1x2:

• P1 computes its share p1 = (x1 + α1)(x2 + α2)− x1(x2 + α2)

• P2 computes its share p2 = −x2(x1 + α1)

• P3 computes its share p3 = α1α2

This protocol is trivially correct as the shares p1, p2 and p3 add up to the product
x1y1 as shown in equation (5) and it is also easy to show that it is perfectly secure.
In the first step P1 and P2 receive independent uniformly generated values α1

and α2. In the second step P1 receives x2 + α2 that is uniformly distributed and
independent of the values P1 has received up to then. Similarly we can show that
the messages received by P2 reveal nothing about the computed product.

Now we notice that

uv = (uA + uB + uC)(vA + vB + vC)

= uAvA + uAvB + uAvC + uBvA + uBvB + uBvC + uCvA + uCvB + uCvC .
(6)

This means that to compute uv we have to compute the products of individual
shares uivj. Three of them—uAvA, uBvB and uCvC—can be computed locally and
we can compute the others by using the above protocol. We know that running
perfectly secure protocols in parallel gives us a perfectly secure protocol [Dam02]
so we can compose our share multiplication protocol out of six instances of the
above protocol to securely compute the needed products in equation (6).

Note that we also need the resulting shares to be from a uniform distribution.
For that each node uniformly generates an additional value and sends it to the next
node in the numerical ordering and the last node sends the value to the first node.
Each party then subtracts the sent value from its share and adds the received
value. Algorithm 10 gives the complete protocol for multiplying two additively
shared values.
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Algorithm 10: Share multiplication for additive shares

Data: values [[[u]]] and [[[v]]]
Result: the product [[[uv]]]
Round 1

Alice generates r12, r13, s12, s13, t12 ← Z232

Bob generates r23, r21, s23, s21, t23 ← Z232

Charlie generates r31, r32, s31, s32, t31 ← Z232

All values ∗ij are sent from Mi to Mj

Round 2

Alice computes
â12 = uA + r31, b̂12 = vA + s31, â13 = uA + r21, b̂13 = vA + s21

Bob computes
â23 = uB + r12, b̂23 = vB + s12, â21 = uB + r32, b̂21 = vB + s32

Charlie computes
â31 = uC + r23, b̂31 = vC + s23, â32 = uC + r13, b̂32 = vC + s13

All values ∗ij are sent from Mi to Mj

Round 3

Alice computes:
cA = uAb̂21+uAb̂31+vAâ21+vAâ31−â12b̂21−b̂12â21+r12s13+s12r13−t12+t31

uvA = cA + uAvA

Bob computes
cB = uB b̂32+uB b̂12+vBâ32+vBâ12−â23b̂32−b̂23â32+r23s21+s23r21−t23+t12

uvB = cB + uBvB

Charlie computes
cC = uC b̂13+uC b̂23+vC â13+vC â23−â31b̂13−b̂31â13+r31s32+s31r32−t31+t23

uvC = cC + uCvC

At the end of the protocol each party has a share of the product [[[uv]]]. The
computation requires three rounds and a total of 27 messages.
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Theorem 4.3. The share multiplication protocol is correct.

Proof. Formally, the correctness of the protocol can be shown by comparing two
expressions, uv and uvA +uvB +uvC . First, we evaluate the shares of the product
[[[uv]]]:

uvA = cA + uAvA

= uAb̂21 + uAb̂31 + vAâ21 + vAâ31 − â12b̂21 − b̂12â21 + r12s13 + s12r13 − t12 + t31

+ uAvA

= uAvB + uAs32 + uAvC + uAs23 + vAuB + vAr32 + vAuC + vAr23

− uAvB − uAs32 − r31vB − r31s32 − vAuB − vAr32 − s31uB − s31r32

+ r12s13 + s12r13 − t12 + t31 + uAvA

= uAvC + uAs23 + vAuC + vAr23 − r31vB − r31s32 − s31uB − s31r32

+ r12s13 + s12r13 − t12 + t31 + uAvA

uvB = cB + uBvB

= uB b̂32 + uB b̂12 + vBâ32 + vAâ12 − â23b̂32 − b̂23â32 + r23s21 + s23r21 − t23 + t12

+ uBvB

= uBvC + uBs13 + uBvA + uBs31 + vBuC + vBr13 + vBuA + vBr31

− uBvC − uBs13 − r12vC − r12s13 − vBuC − vBr13 − s12uC − s12r13

+ r23s21 + s23r21 − t23 + t12 + uBvB

= uBvA + uBs31 + vBuA + vBr31 − r12vC − r12s13 − s12uC − s12r13

+ r23s21 + s23r21 − t23 + t12 + uBvB

uvC = cC + uCvC

= uC b̂13 + uC b̂23 + vC â13 + vAâ23 − â31b̂13 − b̂31â13 + r31s32 + s31r32 − t31 + t23

+ uCvC

= uCvA + uCs21 + uCvB + uCs12 + vCuA + vCr21 + vCuB + vCr12

− uCvA − uCs21 − r23vA − r23s21 − vCuA − vCr21 − s23uA − s23r21

+ r31s32 + s31r32 − t31 + t23 + uCvC

= uCvB + uCs12 + vCuB + vCr12 − r23vA − r23s21 − s23uA − s23r21

+ r31s32 + s31r32 − t31 + t23 + uCvC
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Now we combine the shares to verify that they reconstruct to the product uv.

uvA + uvB+uvC

= uAvC + uAs23 + vAuC + vAr23 − r31vB − r31s32 − s31uB − s31r32

+ r12s13 + s12r13 − t12 + t31 + uAvA + uBvA + uBs31 + vBuA + vBr31

− r12vC − r12s13 − s12uC − s12r13 + r23s21 + s23r21 − t23 + t12 + uBvB

+ uCvB + uCs12 + vCuB + vCr12 − r23vA − r23s21 − s23uA − s23r21

+ r31s32 + s31r32 − t31 + t23 + uCvC

= uAvA + uAvB + uAvC + uBvA + uBvB + uBvC + uCvA + uCvB + uCvC

= (uA + uB + uC)(vA + vB + vC) = uv.

Theorem 4.4. The share multiplication protocol is perfectly secure.

Proof. Since the protocol is symmetrical, we can prove that in each round the
messages received by P1 are independent and from a uniform distribution and
the other cases follow trivially. In the first round, P1 receives four uniformly
and independently generated values r21, r31, s21 and s31 that satisfy the security
requirements by construction.

In the second round, P1 receives the sums â21, â31, b̂21 and â21 where one
addend is a value from a uniform distribution. Therefore, also all the sums are
from a uniform distribution for P1. The sums are independent, because their
uniformly distributed components r32, r23, s32 and s23 have not been addends in
messages received before by P1.

Theorem 4.5. Each share in {uvA, uvB,uvC} is from a uniform distribution.

Proof. Each one of the shares uvA, uvB and uvC is a sum in which the addends
(t31 − t12), (t12 − t23) and (t23 − t31) are from a uniform distribution. Note, that
as shares they represent the value zero which means that locally adding them to
another shared value will retain the value while making the shares have a uniform
distribution.

4.5.4 Share conversion from Z2 to Z232

At the start of the protocol each miner has a bit share of a value [[[u]]] in Z2.
To use such shares in protocols we need to convert them to be uniform in Z232

without compromising [[[u]]]. This functionality is required to validate the input
from the controllers, for example, when range-limited values such as boolean data
is received from the controllers. Share conversion is also an important sub-task in
the bit extraction protocol described in the next section.
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We now explain the design idea behind the protocol. Assume that miners have
one-bit shares uA, uB and uC of a bit value [[[u]]] and we want to compute shares
that represent the same bit, but with shares from Z232 . We reduce this task to
distributed secure evaluation of the polynomial:

f(x1, x2, x3) = x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3 + 4x1x2x3

since we notice that for all bit shares uA, uB, uC ∈ Z2 we can compute

f(uA, uB, uC) = (uA + uB + uC) mod 2

over integer values. The protocol is based on evaluating the polynomial f on shares
of [[[u]]] which means that we want to evaluate

f(uA, uB, uC) = uA +uB +uC−2uAuB−2uAuC−2uBuC +4uAuBuC mod 232 (7)

by computing shares of the addends in the sum. The single-value shares uA, uB

and uC are available, so we need to compute shares of [[[uAuB]]], [[[uAuC ]]], [[[uBuC ]]]
and [[[uAuBuC ]]]. We use the same multiplication method by Du and Atallah [DA00]
for computing [[[uAuB]]], [[[uAuC ]]] and [[[uBuC ]]] as we used in the share multiplication
protocol.

Shares of the product [[[uAuBuC ]]] are computed by running the share multiplica-
tion protocol given in Algorithm 10 on shares of [[[uAuB]]] and [[[uC ]]]. For this purpose
P3 additively shares its share uC with the other miners.

After computing shares of addends in equation (7) we can combine them into
shares of [[[u]]]. The complete protocol is described in Algorithm 11. In the first
round the parties generate the necessary amount of uniform values and in the
second round they run the necessary multiplication sub-protocols. Also in the
second round P3 distributes its share uC between all three miners.

In the third round the parties complete the computation of two-element prod-
ucts [[[uAuB]]], [[[uAuC ]]] and [[[uBuC ]]] and run the share multiplication protocol to find
uAuBuC . The protocol is concluded in the fifth round when parties locally evaluate
f(uA, uB, uC) with the computed shares and compute shares u′A, u′B and u′C .
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Algorithm 11: Share conversion from Z2 to Z232

Data: shared bit [[[u]]] = [[[uA, uB, uC ]]], uA, uB, uC ∈ Z2

Result: shared bit [[[u′]]] = [[[u′A, u
′
B, u

′
C ]]], u′A, u

′
B, u

′
C ∈ Z232

Round 1

Alice generates r12, r13, s12, s13, t12 ← Z232

Alice computes sA = r12r13 − s12 − s13

Bob generates r23, r21, s23, s21, t23 ← Z232

Bob computes sB = r23r21 − s23 − s21

Charlie generates r31, r32, s31, s32, t31 ← Z232

Charlie computes sC = r31r32 − s31 − s32

All values ∗ij are sent from Mi to Mj

Round 2

Alice computes b̂12 = r31 + uA, b̂13 = r21 + uA

Bob computes b̂23 = r12 + uB, b̂21 = r32 + uB

Charlie computes b̂31 = r23 + uC , b̂32 = r13 + uC

Additionally, Charlie shares uC : c31, c32 ← Z232 , c33 = uC − c31 − c32

All values ∗ij, i 6= j are sent from Mi to Mj

Round 3

Alice computes
abA = s31 − r31b̂21

acA = b̂31b̂13 + s21 − b̂31r21

bcA = sA

cA = c31

Bob computes
abB = b̂12b̂21 + s32 − b̂12r32

acB = sB

bcB = s12 − r12b̂32

cB = c32

Charlie computes
abC = sC

acC = s23 − r23b̂13

bcC = b̂23b̂32 + s13 − b̂23r13

cC = c33

The parties run the share multiplication protocol given in Algorithm 10
as a sub-protocol to multiply [[[ab]]] and [[[c]]]. The result is [[[abc]]] and the
sub-protocol takes two rounds because the local computations can be
performed in the current protocol.

Round 5

Alice computes u′A = uA − 2abA − 2bcA − 2acA + 4abcA − t12 + t31

Bob computes u′B = uB − 2abB − 2bcB − 2acB + 4abcB − t23 + t12

Charlie computes u′C = uC − 2abC − 2bcC − 2acC + 4abcC − t31 + t23
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At the end of the protocol each party has a share of a value [[[u′]]] = [[[u]]] but with
different shares. The conversion requires five rounds and a total of 23 messages plus
the cost of a share multiplication operation. Therefore, the total is 50 messages.

Theorem 4.6. The share conversion protocol is correct.

Proof. In the first round the parties generate randomness and in the second round
they distribute their shares of the bit. In the third round miners start computing
the two-element products of the bit shares. We show that the computed shares
abA, abB, abC represent the product of uA and uB.

abA + abB + abC = s31 − r31b̂21 + b̂12b̂21 + s32 − b̂12r32 + sC

= s31 − r31r32 − r31uB + r31r32 + r31uB

+ uAr32 + uAuB + s32 − r31r32 − uAr32 + sC

= s31 + uAuB + s32 − r31r32 + r31r32 − s31 − s32

= uAuB

Similarly it can be shown that acA+acB +acC = uAuC and bcA+bcB +bcC = uBuC .
To compute uAuBuC , we use the share multiplication protocol to multiply uAuB

with uC . For that purpose the third miner shares its bit share uC beforehand. In
the fifth round we have all the necessary shares for evaluating the polynomial f
computed so that the miners can evaluate the polynomial with the shares and use
the results as shares of [[[u]]] in Z232 . The addends tij in the shares are used to give
the shares a uniform distribution and they cancel out trivially at reconstruction
as (t31 − t12) + (t12 − t23) + (t23 − t31) = 0.

Theorem 4.7. The share conversion protocol is perfectly secure.

Proof. To prove the security of the protocol, we show that the messages received
by each miner in every round are independent values from a uniform distribution.
The protocol is not completely symmetrical as in round 2 the miner P3 distributes
shares of its input to the other miners. If we prove security for P1 or P2 then
security for P3 follows directly as it receives less values than the other two nodes.

It is enough to show that messages received by P1 are independent values from
a uniform distribution as the proofs for P2 and P3 are very similar. In the first
round this is easy to show, as all values received by P1 are independently generated
from a uniform distribution.

In the second round P1 receives values b̂21 and b̂31 and c31. The first two are
sums of a uniformly distributed value and another value so they too are uniformly
distributed and c31 is uniformly distributed by construction. Since P1 has not
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received the uniformly distributed operands r32 and r23 in the sums b̂21 and b̂31

before, the latter two values are independent. We now need to show that c31

is independent from both b̂21 and b̂31. Since c31 is generated from a uniform
distribution independently from b̂21 and b̂31, all three values are independent.

In round 3 the miners run the share multiplication protocol which was proven
perfectly secure in Theorem 4.4.

Theorem 4.8. Each share in {u′A, u′B, u′C} is from a uniform distribution.

Proof. This protocol uses the same technique as the share multiplication protocol
in Algorithm 10 to give the output shares a uniform distribution. Namely, each
party generates a value tij that is passed to the next party and is later used in the
sum as and addend by one party and as a subtrahend by another. The respective
proof is given in Theorem 4.5 and applies also to this protocol.

4.5.5 Bit extraction

Each node has a share of the value [[[u]]] and we want to compute shares of the
bits that form [[[u]]]. This is a versatile operation that allows us to perform bitwise
operations with the shares. For example, in our framework we use bit extraction to
build a protocol that evaluates the greater-than predicate. We will now explain our
method of securely computing the bits and how it is the structure of the protocol.
Note, that in this chapter we use the notation a(i) to denote the i-th bit or bit
share of a.

This protocol is inspired by the work of Damg̊ard et al [DFK+06]. To compute
the bits of a secret shared value [[[u]]], each party Pj uniformly generates 32 shares
r(0)j, . . . , r(31)j ∈ Z2 and combines them into a 32-bit share rj =

∑31
i=0 2ir(i)j.

Then, the parties compute the difference [[[a]]] = [[[u]]]− [[[r]]]. Since the difference of a
uniformly distributed value and another value is also from a uniform distribution,
each party can publish its share aj. Now all parties add the two received values
with their own one to compute the public value [[[a]]]. Since each party knows the
public value a and has shares of the bits of r we have reduced the problem of
extracting the bits of a to computing shares of the bits of a+ r.

+ r31

u31

. . .

. . .

r2

u2

r1

u1

a0

r0

u0

c31 . . . c2 c1

a31 . . . a2 a1

Figure 11: Bitwise addition example.
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Figure 11 shows how the bitwise addition is performed—each party has shares
of [[[a]]] = [[[u]]]− [[[r]]] and also shares of bits of [[[r]]]. We use bitwise addition to compute
the i-th bit of the sum as follows:

[[[d(0)]]] =[[[a(0)]]] + [[[r(0)]]]

[[[d(i)]]] =2i[[[a(i)]]] + 2i[[[r(i)]]] + [[[c(i)]]], if i > 0
(8)

Note that the bits [[[d(i)]]] are computed in their respective power of two. To compute
carry bits, we convert the bit representations of [[[a]]] and [[[r]]] into values using the
standard base 2 to base 10 conversion procedure. If we have computed n bits b(i)
of a value b, we can compute the value itself as follows:

b =
n∑

i=0

2ib(i) .

We compute carry bits for position i by building values

[[[â]]] = 2i−1[[[a(i− 1)]]] + · · ·+ [[[a(0)]]]

[[[r̂]]] = 2i−1[[[r(i− 1)]]] + · · ·+ [[[r(0)]]]

[[[û]]] = 2i−1[[[u(i− 1)]]] + · · ·+ [[[u(0)]]]

and computing [[[carry]]] = [[[â]]] + [[[r̂]]] − [[[û]]]. The computed carry bit [[[carry]]] is
computed to the i-th power of two which is suitable for use in equation (8).

Unfortunately, the protocol is not as simple as computing the bits [[[d(i)]]] as we
have to prevent the carry bits from leaking. We notice, that while the bit [[[d(i)]]]
correctly represents the desired bit [[[u(i)]]] as

[[[d(i)]]] = 2i[[[a(i)]]] + 2i[[[r(i)]]] + [[[carry]]] = [[[u(i)]]] mod 2,

it actually has four possible values

[[[d(i)]]] = 2i[[[a(i)]]] + 2i[[[r(i)]]] + [[[c(i)]]] ∈ {0, 2i, 2i+1, 2i+1 + 2i}.

To prevent the extra bit from leaking we proceed by uniformly generating 32 bits
[[[p(0)]]], . . . , [[[p(31)]]], one for hiding each bit [[[d(i)]]], at each party and computing the
bits [[[fi]]]

[[[f(i)]]] = [[[d(i)]]] + 2i[[[p(i)]]] mod 2i+1 .

The parties then publish [[[fi]]] and evaluate the published value. If the published
value is zero, then the i-th bit share of [[[u]]] is equal to [[[p(i)]]] and in the opposite
case it is [[[1− p(i)]]]. The rounds of the protocol are given in Algorithm 12.

47



Algorithm 12: Bit extraction from shares part 1—setup.

Data: shared value [[[u]]]
Result: shares of 32 bits [[[u(0), . . . , u(31)]]]
Round 1

Alice generates r(0)A, . . . , r(31)A, p(0)A, . . . , p(31)A ← Z2

Alice computes q(i)A = (e+ 1) mod 2, i = 0, . . . , 31.
Bob generates r(0)B, . . . , r(31)B, p(0)B, . . . , p(31)B ← Z2

Bob computes q(i)B = (eB + 1) mod 2, i = 0, . . . , 31.
Charlie generates r(0)C , . . . , r(31)C , p(0)C , . . . , p(31)C ← Z2

Charlie computes q(i)C = (eC + 1) mod 2, i = 0, . . . , 31.
The parties run the share conversion protocol given in Algorithm 11 to
convert the bits [[[r(i)]]], [[[p(i)]]] and [[[q(i)]]] to shares in Z232 . The
computation requires four rounds as the local computations are
performed within the current protocol.

Round 5

Alice computes
rA =

∑31
j=0 2j r̂(j)A

v11 = uA − rA

Bob computes
rB =

∑31
j=0 2j r̂(j)B

v21 = uB − rB

Charlie computes
rC =

∑31
j=0 2j r̂(j)C

v31 = uC − rC

All values ∗ij, i 6= j are sent from Mi to Mj

Round 6

Alice:
computes aA = v11 + v21 + v31 and divides it into bits a(0)A, . . . , a(31)A

d(0)A = a(0)A + r(0)A

f(0)A = d(0)A + p(0)A mod 2i+1

sends f(0)A to Bob and Charlie
Bob:

initialises aB = 0 and divides it into bits a(0)B, . . . , a(31)B

d(0)B = a(0)B + r(0)B

f(0)B = d(0)B + p(0)B mod 2i+1

sends f(0)B to Alice and Charlie
Charlie:

initialises aC = 0 and divides it into bits a(0)C , . . . , a(31)C

d(0)C = a(0)C + r(0)C

f(0)C = d(0)C + p(0)C mod 2i+1

sends f(0)C to Alice and Bob
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for i = 1 to 31 do
Round 6 + i

Alice:
f(i− 1) = f(i− 1)A + f(i− 1)B + f(i− 1)C

if f(i− 1) = 2i then u(i− 1)A = q(i− 1)A

else u(i− 1)A = p(i− 1)A

âA =
∑i−1

j=0 a(j)A

r̂A =
∑i−1

j=0 r(j)A

ûA =
∑i−1

j=0 u(j)A

carryA = âA + r̂A − ûA

d(i)A = a(i)A + 2ir(i)A + carryA

f(i)A = d(i)A + 2ip(i)A mod 2i+1

sends f(i)A to Bob and Charlie
Bob:
f(i− 1) = f(i− 1)A + f(i− 1)B + f(i− 1)C

if f(i− 1) = 2i then u(i− 1)B = q(i− 1)B

else u(i− 1)B = p(i− 1)B

âB =
∑i−1

j=0 a(j)B

r̂B =
∑i−1

j=0 r(j)B

ûB =
∑i−1

j=0 u(j)B

carryB = âB + r̂B − ûB

d(i)B = a(i)B + 2ir(i)B + carryB

f(i)B = d(i)B + 2ip(i)B mod 2i+1

sends f(i)B to Bob and Charlie
Charlie:
f(i− 1) = f(i− 1)A + f(i− 1)B + f(i− 1)C

if f(i− 1) = 2i then u(i− 1)B = q(i− 1)B

else u(i− 1)B = p(i− 1)B

âB =
∑i−1

j=0 a(j)B

r̂B =
∑i−1

j=0 r(j)B

ûB =
∑i−1

j=0 u(j)B

carryB = âB + r̂B − ûB

d(i)B = a(i)B + 2ir(i)B + carryB

f(i)B = d(i)B + 2ip(i)B mod 2i+1

sends f(i)B to Bob and Charlie
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Round 38

Alice:
f(31) = f(31)A + f(31)B + f(31)C

if f(31) = 231 then u(31)A = q(31)A

else u(31)A = p(31)A

Bob:
f(31) = f(31)A + f(31)B + f(31)C

if f(31) = 231 then u(31)B = q(31)B

else u(31)B = p(31)B

Charlie:
f(31) = f(31)A + f(31)B + f(31)C

if f(31) = 231 then u(31)B = q(31)B

else u(31)B = p(31)B

After running the protocol, each node has shares of bits [[[u(0), . . . , u(31)]]] which
represent the bits of the input value [[[u]]]. In the first round we run 96 share
conversions, but since we can vectorise this operation, we can do all the conversions
with the same number of messages as a single conversion. Each message will
contain data elements for all parallel operations. This means that the first round
requires 50 messages. Two messages are sent in the fifth round and six messages
are sent each round from sixth to 37th. This gives us a total of 38 rounds and
50 + 2 + 32× 6 = 244 messages.

Theorem 4.9. The bit extraction protocol is correct.

Proof. To show correctness we divide this protocol into subprotocols and prove
that they perform the desired tasks and also jointly form a correct protocol. In
rounds 1 and 5 we generate uniformly distributed values for the protocol and
compute the difference [[[a]]] = [[[u]]]− [[[r]]]. The correctness of this step is trivial.

Now we have reduced the task to finding shares of bits [[[u(i)]]] of the sum [[[a]]]+[[[r]]]
where each party has shares of the difference [[[a]]] and the bits of [[[r]]]. To prove
correctness, we describe the computation path of bits [[[u(i)]]]. Shares [[[u(i)]]] are
computed based on bits f(i) so we will show how they are computed. At first, bits
[[[d(i)]]] are computed by adding the respective bits of [[[a]]] and [[[r]]] and the carry bit
if available.

[[[d(i)]]] =2i[[[a(i)]]] + 2i[[[r(i)]]] + [[[c(i)]]] (9)

In equation (9) [[[c(i)]]] is the respective carry bit in the required power of two when
i > 0 or 0, if i = 0. The bits [[[d(i)]]] are candidates for being a bit of [[[u(i)]]] and we
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verify them by using the following procedure. We add a uniformly generated bit
[[[p(i)]]] modulo 2i+1 to strip the carry bit from the sum and stop it from leaking:

[[[f(i)]]] =[[[d(i)]]] + [[[p(i)]]] mod 2i+1 .

Then, we publish the bit [[[f(i)]]] between all nodes so that each party learns the
sum f(i) + p(i). Now each party determines the bit share [[[u(i)]]] by checking the
i-th bit of f(i) and comparing it to 1. If the bit is 0 we know that [[[d(i)]]] = [[[p(i)]]]
because 0 + 0 = 0 mod 2 and 1 + 1 = 0 mod 2 or more simply—the respective bits
of [[[d(i)]]] and [[[p(i)]]] must be equal for their sum to be 0 modulo 2. In this case
[[[u(i)]]] = [[[p(i)]]].

In the opposite case, if the i-th bit of f [i] is 1 then we know that the respective
bits of [[[d(i)]]] and [[[p(i)]]] must be different. For that reason exactly we generate
bits [[[q(i)]]] = 1 − [[[p(i)]]] in the beginning of the protocol—we can now say that
[[[u(i)]]] = [[[q(i)]]].

The only thing left to show for correctness is carry bit computation. To com-
pute the carry bit for [[[d(i)]]], i > 0, we combine bits 0, . . . , i− 1 of [[[a]]], [[[r]]] and [[[u]]]
into values [[[â]]], [[[r̂]]] and [[[û]]]. Then, each node computes

carry = [[[a]]] + [[[r]]]− [[[u]]]

and by that, removes all bits except for the carry from the sum so that the carry
bit remains in the i-th position of carry.

Theorem 4.10. The bit extraction protocol is perfectly secure.

Proof. We will now present a sketch for the proof that the protocol is perfectly
secure. To show that the protocol is secure we show that it is composed of secure
sub-protocols. In the first round, parties run share conversion on a vector of 96
bit shares. This sub-protocol was proved perfectly secure in Theorem 4.7.

In the fifth round, P1 receives values v21 and v31 which are differences between
the input shares u∗ and a generated uniformly distributed value r∗. The values r∗
are compiled by the sending parties by combining shares of 32 bits generated inde-
pendently from a uniform distribution so the sums v21 and v31 are also uniformly
distributed independent values.

The other rounds share the message structure so the following discussion applies
to rounds 4, . . . , 35. The messages received by P1 are in the form f(i)∗ = d(i)∗ +
2ip(i)∗. In these messages, p(i)∗ is a uniformly distributed value so the sums are
also uniformly distributed. Since the values p[i]∗ have not been used in any other
protocol messages they are also independent for P1.

From the security of the sub-protocols we conclude that the bit extraction
protocol is perfectly secure.
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Theorem 4.11. Each share in {u(i)j : i ∈ {0, . . . , 31}, j ∈ {A,B,C} is from a
uniform distribution.

Proof. Each share u(i)j is computed from either p(i)j or q(i)j = 1−p(i)j which are
independently and uniformly generated bit shares converted to be a shares in Z232

in the first round. Since we proved that the shares of converted bits are from a
uniform distribution in Theorem 4.8 it follows, that also shares u(i)j are uniformly
distributed.

4.5.6 Evaluating the greater-than predicate

All the protocols we have described up to now have performed mathematical oper-
ations with shared values with outputs also being a shared value. We now describe
a protocol that evaluates a predicate with two parameters—the greater-than com-
parison. It is designed as an example of how to build predicate operations in our
framework.

Since Z232 is a finite ring we have to define the greater-than predicate for its
elements. We must take into account that all arithmetic is performed modulo
232 and elements of Z232 natively have no sign. We define our predicate GT :
Z232 × Z232 → 0, 1 as follows:

GT(x, y) =

{
1, if the last bit of the difference x− y is 1
0, otherwise

(10)

This definition is correct for 31-bit integers and fails for 32-bit integers as the
latter requires the operation to return a value in Z233 . However, 31-bit integers are
sufficient for practical purposes. The reason for failure is that the last bit of the
value becomes the sign bit which basically divides the set of values into two parts—
the “positive” half which consists of values 0, . . . , 230 − 1 and the “negative” half
which contains 230, . . . , 231− 1. This is similar to the way programming languages
handle signed integers. It is important to remember this while using the framework,
because for any value z ∈ {230, . . . , 231 − 1} the predicate GT(z, 1) is false as the
value z is interpreted as a “negative” value.

Algorithm 15 shows the protocol for evaluating GT on two additively shared
values.
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Algorithm 13: Evaluating the greater-than predicate.

Data: shared values [[[u]]] and [[[v]]]
Result: f = GT(u, v) according to the definition in equation (10)
Round 1

Alice computes dA = uA − vA.
Bob computes dB = uB − vB.
Charlie computes dC = uC − vC .
The parties run the bit extraction protocol given in Algorithm 12to find
the bits [[[d(0)]]], . . . , [[[d(31)]]] of [[[d]]]. The computation requires 37 rounds as
the local computations are performed within the current protocol.

Round 38

Alice learns the result share [[[d(31)A]]].
Bob learns the result share [[[d(31)B]]].
Charlie learns the result share [[[d(31)C ]]].

At the end of the protocol the miners have shares of the bit d(31)A, d(31)B

and d(31)C . Based on this bit the miners may now push the share of the greater
value on the stack top or report the value of the predicate to the controller. Both
approaches are viable, but the first one is preferred, because it does not reveal
any information. Revealing the bit allows the controller to change its control flow
dynamically during the algorithm, but has the obvious downside of leaking a bit
of information. The protocol requires as many messages as are needed for bit
extraction plus the three shares sent to the controller which gives us a grand total
of 244 + 3 = 247 messages.

Theorem 4.12. The greater-than protocol is both correct and perfectly secure.

Proof. The correctness of the protocol follows from the facts that it corresponds
to our definition and GT and the bit extraction protocol was proven correct in
Theorem 4.9.

The security is trivially reduced to the one of bit extraction that was also
proved in Theorem 4.10.

Theorem 4.13. Each share in {d(31)A, d(31)B, d(31)C} is from a uniform distri-
bution.

Proof. Since the shares are bits from the bit extraction algorithm presented in
Algorithm 12 the uniformity of their distribution follows directly from Theo-
rem 4.11.
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5 Overview of our implementation

5.1 Overview

Based on the described secure computation framework, we have built an imple-
mentation called Sharemind. The name reflects the functionality—data mining
of secret shared databases. There is also a more metaphorical explanation—it can
be imagined that the three servers performing computations form a shared mind.

Our implementation is in the form of a software program for personal comput-
ers. There are two kinds of programs—mining nodes run the miner software and
other parties run the controller software. The miner software consists of algorithms
and protocols that perform the multiparty computation and data mining tasks.
The controller software is used to send data and commands to the miner software.

All the protocols described in the framework are implemented in the miner
software. The controller software orders the miners to execute the protocols in the
desired order. Since we need controllers with different functionalities, like data
entry terminals and analysis workstations, we have developed a controller library
which makes developing such applications straightforward. The programmer will
use the methods in the library to connect to the miners, share data and execute
protocols.

This section gives an overview of the parties’ communication channel set-up
process. We also describe the computational capabilities of the miners and the
controller library interface. However, we start by giving the reader some technical
information about the implementation.

5.2 Implementation notes

The software is implemented in the C++ programming language using the GNU
C++ compiler. It uses the RakNet network library for communication1. The
system is designed to be cross-platform and development is done on Apple Mac
OS X, Linux/UNIX and Microsoft Windows. We chose C++ and RakNet because
the network library is designed for high throughput and it also works with popular
computing platforms. A possible downside is that all parties in the system must
communicate by using RakNet, but this is a low risk, because the library has an
open source license.

Operations in Z232 are provided by the C++ native 32-bit unsigned long
datatype. The messages are sent over the network by using the UDP transport
protocol which is one of the most common Internet protocols. UDP datagrams
have less overhead and are smaller than TCP packets. However, plain UDP is un-
reliable so we use the reliability layer offered by the RakNet network library. We

1RakNet — a reliable cross-platform network library. URL: http://www.rakkarsoft.com/
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prefer using RakNet over TCP because of smaller packages, easier programming
interface and platform independence.

There is an important restriction in the current version of Sharemind at the
time of defending this thesis—only one controller party is supported by the miners
at any time. In a future version we might extend the scheduler to support more
controller nodes. The scheduler can also be improved to minimise the amount of
wasted computing cycles during network transfers. We also evaluate the risks of
executing multiple parallel queries on the miners as the number of values available
for our honest-but-curious miners will grow with each such query.

The current implementation has no restrictions on data retrieval—in the pre-
sented implementation the miners happily provide shares of all data in their stacks,
heaps and databases. This is for testing purposes and helps to verify the results
of computation. In a real-world scenario the miners must withhold all raw data.
As a final note, the communication in the current version of Sharemind is unen-
crypted.

5.3 Communication channels

In our system all miners have communication channels with each other miner and
the controller has a communication line to each miner. During controller setup
the library locates all three miners and assigns node numbers 1, 2 and 3 to them.
After that the miners connect to each other and at the end of start-up all nodes
have communication channels to other nodes in the system.

Although UDP is a connectionless protocol, a persistent connection is main-
tained for each channel by the network library. This allows us to detect transmis-
sion problems and node exits. The communication between nodes is message-based
with ordering and reliability provided by the library. There are multiple ways of
sending messages—using predefined fixed structures or dynamically assembled bit-
streams. In the first case the messages always have a fixed size and structure but
in the second case we have exact control of the amount of data in the message.
For example, we can put the number of transmitted values in the beginning of the
message and follow it by all the values. We chose the dynamic construction option
because it allows us to easily transfer vectors of any size between parties.

5.3.1 Messaging module

Both the miners and controllers use a common messaging class which is called the
NetworkNode. Each party runs one NetworkNode instance that takes care of net-
work setup and messaging. Messages are received and cached by the NetworkNode

so when the miner or controller expects a value from another node it requests
this value from the network node. If the NetworkNode has the requested value in
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its queues, it returns it immediately. Otherwise it waits until the desired value
arrives.

The communication is composed of three types of values—elements of Z232 ,
vectors of those elements and strings. The first two are used in passing command
codes and parameters and strings are currently used only to specify database names
in loading and saving commands.

5.3.2 Prototyping and real world application

The communication infrastructure in Sharemind is designed from a prototyping
perspective and a real-world system will have to be built on slightly different princi-
ples. Whereas in Sharemind the set-up procedure is coordinated by the controller
to simplify testing new applications, in a real-world solution the miners must be set
up individually. Sharemind is a self-organising system and this makes developing
easier, because running an application requires less manual configuration.

We now describe the preferred scenario for an application with higher security
requirements. Three organisations should be identified to maintain the servers
that run the miners. These organisations must have no motive to collaborate with
each other to reconstruct the database. This can be achieved if the organisations
are competing companies or government organisations protecting people’s privacy.
Each miner maintainer will ensure that the miner runs and is available for the
controller applications. The controller applications are configured with the network
addresses of the miners and connect to them at startup. The main difference with
Sharemind is that in our implementation miners start with no configuration—
it is supplied by the controller when it starts. In the real world the miners are
configured locally and the controllers have no control over their operation.

In Sharemind the controllers can request any data in the stack, heap or
database from the miners. This allows us to use automated tests to verify the
behaviour of the system. In a real world database the miners will not give out
shares of private information.

5.4 Computational environment

5.4.1 Overview

If we want to run data mining algorithms on the system, we need to provide a com-
putation environment for them to run in. To implement an algorithm we require
a processor that can run instructions and storage space for keeping intermediate
results. Additionally, permanent storage allows the algorithms to save time on
loading all the data from the controller before each computation.

In our implementation the three miners form a distributed virtual processor for
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secure multiparty computations. This processor has an instruction scheduler for
running operations, a stack for passing arguments for operations, a heap for ad-
dressable storage of intermediate results and a database for long-term data storage.
The processor also has communication ports for controllers that can load instruc-
tions and data to the processor for processing.

Note that all miners run the same program code. If some query requires spe-
cific processing meaning that some nodes must perform differently as others, it is
achieved by the miner reading its assigned number and performing accordingly.
The miners are numbered from one to three. Another consequence is that the
protocols are rewritten to address other nodes by relative position instead of the
absolute one. For example, instead of receiving some data from miner 1, processing
it and forwarding it to miner 3, the code receives data from the previous miner,
processes it and sends it to the next miner. The previous and next relationship are
defined cyclically over the numbers of miners, with the wrapping point between
miners three and one.

5.4.2 Instruction scheduler

Each miner has a simple instruction scheduler that handles incoming commands
and determines the order of processing. The miners process instructions sequen-
tially, one operation at a time. The order is determined by the arrival of messages
containing the commands. All miners run the same operation in parallel.

Each scheduler manages a queue of instructions. Single round operations, like
data manipulation and simple arithmetic are executed immediately without using
the instruction queue. In the context of our system, operations that have more than
one round are called queries. Queries are added to the queue and the scheduler
processes them round by round. Algorithm 14 illustrates how the scheduler decides
the execution order of operations.
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Algorithm 14: Sharemind instruction scheduler

Data: list of queries Q
while the scheduler is running do

if Q contains a query then
let q be the first query in Q
if q is not complete then

complete next round of q
else

remove q from Q
end

else
let c be the next command
if c is a single-round instruction then

process c
else

add c to Q
end

end

end

After each round the query passes control back to the scheduler that checks
if the query is complete and if it is, discards it. In either case it takes the first
query in the queue and runs its next round. The processing is sequential—no new
operations are executed and no new queries are added until the queue is empty.

Both the controllers and the miners themselves can add operations to the queue.
For example, a bit extraction protocol requests the scheduler to add a share con-
version query to the front of the queue. Now if the bit extraction query completes
its round, the share conversion will be run next. If the share conversion completes,
the scheduler will run the next round of the bit extraction query.

It is possible to improve the scheduling of operations to reduce or even com-
pletely remove the idle time of the miners as they wait for network messages. This
can be achieved by switching between multiple queries as they wait for data from
the other parties.

5.4.3 Runtime storage

The virtual processor has two kinds of runtime storage—the stack and the heap.
Their contents are temporary, as they are forgotten when the miner is shut down.
Both containers only hold shares of data instead of the actual values. When a
value is stored in either one by a controller, the value is shared automatically.
Similarly, if a value is read from either the stack of the heap, its shares are read

58



from the miners and the original value is reconstructed.
The stack represents the well-known data structure with the same name. It

provides the standard pushing, peeking and popping operations. The stack is used
to pass parameters between processor instructions. Each operations reads its input
from the stack and writes the result back on top of it.

The stack has a unified data type—it stores elements of Z232 . Our system also
handles vectors of these elements, so the stack must also support pushing and
popping vectors. Our solution is to extend our implementation of the stack to a
randomly accesible array. This allows us to optimally implement the vector pop
operation and retain the order of the elements. We can return the necessary part
of the vector without popping each value individually and building a vector from
them.

To illustrate the use of the stack for passing arguments to operations, we de-
scribe the invocation of the bit extraction query. We start by putting the input
value on the stack. Note that in this example we assume that the controller can ask
the miners to provide shares of the data at any time. This is for demonstrational
purposes only, as a normal system will not publish secret values on command.

1. The controller library receives a command to push a value on the stack and
the value is included as a parameter.

2. The controller library distributes the input value into shares.

3. The controller library sends each miner the command to push a value on the
stack. Each miner gets a different share of the input value.

4. The miners receive the share and push it on their local stacks.

5. The miners report that the value is on the stack.

6. The controller library receives the report that the value is on the stack.

Assuming that the controller is the initiating party of the query, the following
steps are taken to complete the computation.

1. The controller library receives a command to extract bits from a value.

2. The controller library sends each miner the command to extract bits from a
value.

3. The miners receive the command and check the state of the stack. If there
are no values, the miners report this to the controller as an error and stop.
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4. The miners execute the bit extraction query. This query pops a value of the
stack and uses it as the input value.

5. The miners complete the query and push 32 shares of bits of the input value
on the stack.

6. The miners report to the controller that the query was completed.

The controller may now request that the 32-bit vector of values is popped from
the stack and sent to the controller that can then reconstruct the bits from the
shares.

The heap is implemented as a randomly accessible vector of elements of Z232 .
It is used for storing intermediate results in algorithms. Since elements of this
structure can be addressed by indices, the programmer can “put away” results
and return to them later. Values in the heap may come from the stack and also
directly from the controller.

All data cells in the heap also have one unified type. The heap has no explicit
support for vectors and it is up to the programmer to store values in a vector
to individual heap cells. Data on the heap can be pushed back on the stack for
further operations.

We note that queries also have internal storage for storing protocol data be-
tween rounds. This data is kept separately from the stack and the heap. If the
query supports vector processing it can also store vectors of input, intermediate
and output data. This data cannot be extracted from the query neither to the
stack nor the heap.

5.4.4 Long-term storage

To securely store data for further analysis the miners have a secret shared database.
The database is in the form of a matrix of elements of Z232 . Following the traditions
of runtime storage only shares are stored in the database. The database can be
both read and written many times as it can be saved to a disk. The security of the
data on the disk is provided by the fact that it is secret shared and will provide
no information to the reader without the other shares.

The miners can handle one database at a time, but they are capable of loading
and saving databases with different names. Values in the database can be pushed
on the stack individually, by column and by row. Values are addressed by a
combination of row and column indices. Rows and columns are addressed by their
respective indices. There is no diret way of storing a database value in the heap
because the heap is designed for intermediate results. Input data for computations
is read from the stack in all cases. To save data in the database it must be read
either from the stack or the heap and stored in a database cell.
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5.5 Controller library

The controller library is the programming API for developing secure computation
software on the virtual processor of Sharemind. It helps the programmer to
correctly communicate with the miners, handle data and run queries. It takes care
of connecting to the miners and setting up the computation environment. Methods
of the library perform secret sharing and reconstruction where necessary.

Only individual atomic operations are provided by the library. The control
structures are written in C++ by the developer of the application. A secure com-
putation program looks like a standard C++ application that uses a specific library
to perform computations. The library provides the guarantee that all computa-
tions performed by using it preserve the privacy of the data. It is important to
understand that all computation performed on the data with other methods than
the ones in the controller library are inherently insecure.

For each command given to it, the library performs a remote procedure call to
all three miners. The code for the command is sent to the miners, followed by the
given parameters. Single values, vectors and strings are serialised before network
transmission and recovered at the receiver. Both the miners and the controller use
the same network transport layer to exchange commands and data.

Method invocation is blocking—the controller library waits until the miners
have completed the task and reported back to the controller with their results.
These results are interpreted and the result is given to the programmer using the
library method return value. If the results contain data, it is reconstructed from
shares automatically,

The library also provides other services like logging, database management and
random value generation. These are used by the methods of the library, but they
are also available for the programmer.

5.5.1 Controller interface

The developer has access to the miners’ functionality through the controller inter-
face class. For the developer the interface looks like a processor with a limited set
of commands. The fact that behind the scenes, secret sharing, remote procedure
calls and share reconstruction are transparently performed, is hidden from the
developer.

Methods of the controller library are divided into the following categories:

1. system operations — setting up the system and handling the database,

2. data management — exchanging data between the controller and the miners,
local operations at the miner,

3. computation — performing computations with the data.
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For a complete description of the controller interface please see the Controller
API documentation of Sharemind provided with the source code [Bog07]. Here
we give a short overview of the capabilities of the system.

The system operations handle miner configuration and starting connections.
The programmer can specify the locations of three miners and order the controller
interface to perform the self-organising startup routine that interconnects the min-
ers and prepares the system for computation. Other system operations order the
miners to load or save a database with the given name.

Data transfer operations include reading and storing values in the heap by spec-
ifying the cell address. The controller can also perform standard stack operations
like pushing and popping values in the stack. While these operations exchange
data between the miners and the controller there are also local data management
operations that are executed at the miners without data transmissions. These
include duplicating and swapping values on the stack, pushing contents of the
database onto the stack and moving data between the stack and the heap.

Most of the operations work on vectors with multiple elements for performance
reasons. This helps us to keep the number of network messages low and our
development has confirmed that this is an important optimisation. Sending many
small messages is inherently slower than sending one or more larger messages.

Computation operations can be divided into in two categories—single round
protocols and queries which have more than one round. Operations which can
be completed locally include addition and multiplication by scalar. Currently
multi-round operations are multiplication, share conversion from Z2 to Z232 , bit
extraction and evaluating the greater-than predicate. Note, that most of the com-
putation operations are also vectorised for performance reasons.

5.5.2 Structure of a secure computation application

A secure computation application built to work with Sharemind is a regular
C++ program that links against the controller library. At startup the application
creates a controller interface object that will be used for performing tasks on
Sharemind miners. The application must specify the location of the miners
and initiate the startup routine which interconnects the miners. This routine is
blocking and returns when the system is ready for computation.

Now the application can start executing operations on the miners, but for this
we need some data. We can provide it directly by sending it to the miners or by
loading a previously prepared database. Before each computation we must make
sure that there are enough values on the stack and after each computation we must
do something with results. If we want to continue computation on the results then
we can keep them on the stack and run the next operation.

The controller application orders computation by calling the respective method
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of the controller library. The method returns when the computation is done so we
can start another one. When we are done, we tell the controller to shut down and
the connection to the miners is closed.

5.6 Other implementations

This section gives an overview of other efforts in implementing platforms for se-
cure multiparty computations. We introduce two related projects —Fairplay and
SIMAP.

The first implementation we describe is FairPlay [MNPS04] by Malkhi et al.
FairPlay is a two-party computation system for secure function evaluation. Fair-
Play specifies computed functions using a secure function definition language SFDL
and compiles them to Boolean circuits specified in the secure hardware definition
language SHDL. The circuits can then be evaluated on two interpreters—one for
each party in the system. The system provides security in the presence of a mali-
cious adversary with a marginal error rate.

SIMAP — Secure Information Management and Processing is a project lead
by Peter Bogetoft and Ivan Damg̊ard. The goal of SIMAP is to build a devel-
opment platform for privacy-preserving data processing applications. The system
has evolved from work presented in [BDJ+06] and is currently in development.
The computations are executed by using a secure multiparty computation run-
time SMCR which consists of two kinds of parties—clients that provide the inputs
and servers that perform the computations. A homomorphic threshold secret
sharing scheme is used to distribute data between the servers and the runtime is
capable of performing operations with this data. The authors have developed a
domain-specific language for describing secure computations [NS07].

Our implementation concentrates on building a privacy-preserving interpreter
for data analysis algorithms. The interface of the interpreter is currently in the
form of a programming library. It would be interesting to investigate the possibility
of adapting the high-level languages developed for FairPlay and SIMAP to our
interpreter.
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6 Experiment results

6.1 Experiment set-up

To evaluate our implementation we benchmarked the computation operations im-
plemented in Sharemind. We chose a number of operations and ran them on the
system while measuring the time it took to complete each operation. The tim-
ing was performed at the controller application which means that the time used
to send the command and parameters and receive the results is included in the
timings.

We used generated data for input and executed each operation 10 000 times.
The operations were timed by using the millisecond-precision timer library pro-
vided with the RakNet networking library. After the completion of each step the
current timestamp was stored and in the end of the operation the timings were
written to a file on the disk.

The testing computers have 2.4 GHz Intel Pentium processors with Hyper-
Threading support and 512 megabytes of RAM and run SuSE Linux 10.0 as the
operating system. The computers are connected in a local switched network with
transmission speeds up to 1 gigabyte per second. The average ICMP ping time for
100 packets exchanged between two computers was 0.191 milliseconds.

In the following all timings are given in milliseconds unless specified otherwise.

6.2 Computing the scalar product

We test multiplication and addition by computing the scalar product of two vec-
tors. This allows us to use the vectorised multiplication capability of Sharemind.
The timed operation consists of the following steps:

1. Load a database vector with n elements and push it on the stack

2. Load another database vector with n elements and push it on the stack

3. Perform share multiplication on the two loaded n-element vectors.

4. Add the top n values on the stack.

5. Return the result to the controller.

6. Clear the stack for the next iteration.

We ran the operation with several databases with n rows and 10 columns
where n = 5, 100, 1000, 5000, 10000, 20000, 40000, 60000, 80000, 100000 to see how
well the vectorised multiplication operation scales when it has to work with larger
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input vectors. In each iteration we randomly picked two database columns and
computed their scalar product.

The resulting datasets contain method timings for each iteration of the scalar
product algorithm. Based on this data we computed the minimum, maximum,
mean, median and standard deviation for the execution time of each method. The
minimum execution gives us a lower bound for computation while the maximum
execution time represents the possible worst case for a vector of the given size.
The mean gives us the average of the computation times in all iterations and the
median shows the middle value in the distribution. The median is not affected by
extremely small or large values in the distribution. The standard deviation shows
how widely the values are distributed. We chose standard deviation, because we
are interested in the deviations in each experiment. Standard deviation is also not
significantly affected by the few extreme values in our experiment data.

The results for each vector size are given in Tables 1-10. Table 11 gives a
comparison of the total computation times for all vector sizes.

The unusually large maximal values occurred in the first iteration of tests with
vectors with more than one thousand elements. Starting from the second or third
iteration the timings approached the median and varied considerably less. Since
we loaded the database before starting timing the computations, the cause for the
long first iteration is probably in the operating system or network library level.
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Operation Minimum Maximum Mean Median Standard deviation
Load 1 35 76 48.7 48 3.02
Load 2 36 64 48.59 48 2.65

Multiply 84 121 101.1 96 6.41
Add 36 65 48.61 48 2.7
Read 35 64 48.57 48 2.65
Clear 36 64 48.52 48 2.57
Total 311 421 344.09 337 14.38

Table 1: Scalar product of 5-element vectors, 10 000 iterations

Operation Minimum Maximum Mean Median Standard deviation
Load 1 36 120 48.76 48 3.1
Load 2 36 84 48.56 48 2.65

Multiply 83 479 99.58 96 6.95
Add 35 68 48.57 48 2.68
Read 36 64 48.53 48 2.54
Clear 36 65 48.44 48 2.37
Total 263 719 342.43 337 14.53

Table 2: Scalar product of 100-element vectors, 10 000 iterations

Operation Minimum Maximum Mean Median Standard deviation
Load 1 35 64 48.75 48 3.27
Load 2 35 65 48.56 48 3.02

Multiply 96 1213 247.82 252 14.53
Add 35 64 48.65 48 3.02
Read 35 72 48.6 48 2.95
Clear 35 64 48.57 48 2.93
Total 336 1453 491.04 492 9.63

Table 3: Scalar product of 1000-element vectors, 10 000 iterations
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Operation Minimum Maximum Mean Median Standard deviation
Load 1 35 72 48.78 48 3.33
Load 2 35 64 48.61 48 3.03

Multiply 312 6792 692.25 672 155.85
Add 35 65 48.61 48 3.07
Read 35 64 48.52 48 2.95
Clear 35 72 48.43 48 2.92
Total 564 7033 935.19 912 155.75

Table 4: Scalar product of 5 000-element vectors, 10 000 iterations

Operation Minimum Maximum Mean Median Standard deviation
Load 1 39 72 49.41 48 3.87
Load 2 40 64 49.22 48 3.48

Multiply 360 4428 1385.69 708 145.96
Add 36 65 49.09 48 3.44
Read 40 65 48.96 48 3.24
Clear 40 64 48.93 48 3.23
Total 600 7188 973.34 949 145.93

Table 5: Scalar product of 10 000-element vectors, 10 000 iterations

Operation Minimum Maximum Mean Median Standard deviation
Load 1 39 71 49.52 48 4
Load 2 40 64 49.17 48 3.54

Multiply 456 13116 1014.65 1008 196.39
Add 40 65 49.21 48 3.6
Read 39 68 49.05 48 3.38
Clear 40 64 48.98 48 3.28
Total 720 13356 1260.58 1248 196.17

Table 6: Scalar product of 20 000-element vectors, 10 000 iterations
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Operation Minimum Maximum Mean Median Standard deviation
Load 1 39 72 49.57 48 4.06
Load 2 40 64 49.23 48 3.62

Multiply 539 6037 1323.84 1285 225.06
Add 39 72 49.26 48 3.67
Read 40 64 49.14 48 3.49
Clear 44 64 49.02 48 3.34
Total 779 6290 1570.07 1536 225.22

Table 7: Scalar product of 40 000-element vectors, 10 000 iterations

Operation Minimum Maximum Mean Median Standard deviation
Load 1 38 65 49.5 48 3.96
Load 2 40 64 49.2 48 3.59

Multiply 804 6323 1372.39 1321 252.56
Add 40 68 49.24 48 3.64
Read 39 64 49.11 48 3.47
Clear 46 64 49.03 48 3.35
Total 1081 6575 1618.47 1571 252.52

Table 8: Scalar product of 60 000-element vectors, 10 000 iterations

Operation Minimum Maximum Mean Median Standard deviation
Load 1 36 72 49.41 48 3.88
Load 2 40 68 49.22 48 3.61

Multiply 769 6888 1385.69 1344 253.02
Add 40 65 49.17 48 3.55
Read 40 65 49.03 48 3.34
Clear 36 64 48.91 48 3.18
Total 1008 7188 1631.44 1588 253.12

Table 9: Scalar product of 80 000-element vectors, 10 000 iterations
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Operation Minimum Maximum Mean Median Standard deviation
Load 1 39 65 49.63 48 4.1
Load 2 40 68 49.28 48 3.7

Multiply 889 6900 1383.38 1332 238.06
Add 40 64 49.31 48 3.72
Read 40 72 49.14 48 3.51
Clear 40 64 49.02 48 3.35
Total 1139 7187 1629.76 1573 238.1

Table 10: Scalar product of 100 000-element vectors, 10 000 iterations

Size of vector Minimum Maximum Mean Median Standard deviation
5 311 421 344.09 337 14.38

100 263 719 342.43 337 14.53
1000 336 1453 491.04 492 9.63
5 000 564 7033 935.19 912 155.75
10 000 600 4668 973.34 949 145.93
20 000 720 13356 1260.58 1248 196.17
40 000 779 6290 1570.07 1536 225.22
60 000 1081 6575 1618.47 1571 252.52
80 000 1008 7188 1631.44 1588 253.12
100 000 1139 7187 1629.76 1573 238.1

Table 11: Scalability of scalar product computations using total computation time
in milliseconds
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Figure 12: Timings for computing the scalar product.

The diagram in Figure 12 is based on the timings in Table 11 and shows
how the computation time increases with growth of the vector. We see that our
implementation of scalar product computation scales very well. Computing the
scalar product of two 100 000-element vectors takes about five times as long as
computing the scalar product of two five-element vectors. Figure 12 also shows how
the standard deviation affects the computation time for each size of vector. We
see that starting from 5 000-element vectors the deviation increases considerably.
This effect can be attributed to the large size of the network messages exchanged
during the protocol. Processing the vectors in smaller batches could decrease
the standard deviation, but the additional overhead of more protocols sent might
also provide a negative effect. Further experiments have to be conducted to get
conclusive results.

Since the local computations in our system are simple and efficient, most of
the time is spent in exchanging network messages. This hypothesis is supported
by the data in Tables 1-10 which shows no significant increase in the timings for
computing the sum of the products as the size of the vectors increases considerably.
This means that the best path for optimising our system is to reduce the number
of rounds in the protocols.

In 2006 Yang et al implemented secure scalar product computation between
two parties based on homomorphic encryption [YWS06]. The running times for
their implementation are linear in the size of the input vectors. They provide
experiment results for two separate implementations—one, that precomputes the
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encryptions for the vector and the other that does not do any precomputation.
Without precomputation their implementation computes the scalar product of
two 100 000-element vectors in 17 minutes. With precomputation the running
time of the actual protocol is reduced to five seconds, but the encryptions have
to be computed beforehand and stored securely. The running times for their
implementation are linear in the size of the input vectors which means that if the
vector is twice as large it takes two times as long to complete the computation.

In conclusion, our implementation of the share multiplication protocol is effi-
cient and suitable for use in real data processing applications. As expected, the
implementation is more efficient when used on vectors of values not single values.

6.3 Evaluating the greater-than predicate

To evaluate the greater-than predicate we generate two values and find out, which
one was greater. We measure the time taken to load the data and to evaluate the
predicate separately. The results of the experiment are given in Table 6.3.

Operation Minimum Maximum Mean Median Standard deviation
Load 36 72 48.7 48 2.84
GT 923 2004 999.95 976 78.02

Total 971 2050 1048.65 1031 78.11

Table 12: Timings for evaluating the greater-than predicate in 10 000 iterations

According to our results evaluating greater-than predicate in Sharemind takes
an average of one second that is computationally quite expensive. The main rea-
son for the cost in time is the complexity of the bit extraction sub-protocol that
currently requires 38 rounds. The currently implemented protocol is suboptimal
as there exist protocols with less rounds, like the one used in FairPlay [MNPS04].

A two-party version of the greater-than evaluation is presented by Malkhi et al
in their FairPlay implementation [MNPS04]. Their implementation evaluates the
greater-than predicate in 1.25 seconds. Our solution is faster, but only marginally.
For developing real-life applications we need a more efficient protocol.
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7 Conclusion

In this thesis we present a framework for performing secure multiparty computa-
tions. Our main goal was to build a model for privacy-preserving computations
that could be easily and efficiently implemented in software. We achieved this
goal and in this work we present both the developed theoretical framework and
the practical implementation.

Our solution uses three computing parties for efficiency reasons—the known
two-party computation protocols are computationally inefficient while adding more
parties requires more communication and is economically more expensive. The
data values in our framework are elements of Z232 . We use the additive n-out-of-n
secret sharing scheme for distributing the data between the parties and provide
protocols for performing basic operations on shared data.

We present protocols for addition, multiplication by scalar, multiplication, con-
verting shares from Z2 to Z232 , extracting bits of a value and performing the
greater-than comparison. We show that these protocols are correct and prove that
they are perfectly secure in the honest-but-curious model with up to one corrupt
party in the system.

Our main result is the implementation of our framework in a software platform
called Sharemind. We built Sharemind to show that our theoretical approach
is practical and feasible. The software is written by using the GNU C++ compiler
and uses the RakNet networking library for communication. Sharemind is a
cross-platform application and has been tested on Linux, Mac OS X and Microsoft
Windows. The communication between parties uses the UDP protocol in the
Internet protocol suite. The source code of the prototype version of Sharemind
is presented together with this thesis.

The implementation consists of the miner software and the controller library.
The miner software is run as a server that contains protocol implementations
and provides a computational environment for data processing algorithms. The
controller library provides a programming interface to use the services provided
by the miners. The controller library allows the user to easily implement data
processing applications by translating the users’ commands to protocol invocations
for the miners. The most immediate benefit of this library is the decrease in time
needed to develop prototypes for privacy-preserving data processing algorithms

We have developed a number of testing applications to show how the platform
operates. This thesis also presents experiment results from timed executions of
these testing applications that show the feasibility of our approach. We tested a
Sharemind-based implementation of a scalar product computation algorithm and
timed the results. The implementation scales very well and provides performance
sufficient for real-life computations. The results for greater-than predicate were
less impressive and show room for improvement.
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8 Kuidas teha turvaliselt arvutusi ühissalastatud

andmetega

Dan Bogdanov

Magistritöö (40 AP)

Kokkuvõte

Käesolevas magistritöös kirjeldame turvaliste mitme osapoolega arvutuste läbi-
viimiseks loodud raamistikku. Meie peamine eesmärk oli luua raamistik, mille abil
saab kirjeldada andmete privaatsust säilitavaid arvutusi ning mis oleks kergesti
tarkvaras realiseeritav. Privaatsuse säilitamine on isikustatud andmete töötlemisel
oluline, kuid üldtunnustatud tehnilist lahendust selle jaoks veel loodud ei ole.

Töös esitame raamistiku, mis kasutab turvalisi ühisarvutusi ja ühissalastust
turvatud arvutuskeskkonna loomiseks. Arvutusteks otsustasime kasutada kolme
osapoolt, sest teadaolevad kahe osapoolega protokollid on ebaefektiivsed, samas
liiga paljude osapoolte rakendamine suurendab protokollide keerukust ning tõstab
süsteemi hinda.

Meie raamistik toetab andmeid, mis on esitatavad hulga Z232 elementidena. Me
kasutame andmete osakuteks jaotamisel aditiivset n-seast-n ühissalastusskeemi.
Töö sisaldab ühisarvutuse protokolle, mille abil saab ühissalastatud andmetega
teha arvutusi ilma algseid väärtusi taastamata. Esitame protokollid andmeosakute
liitmiseks, omavaheliseks ja skaalariga korrutamiseks, teisendamiseks hulgast Z2

hulka Z232 , bittideks jaotamiseks ning suurem-kui võrdlemiseks. Me näitame, et
protokollid on korrektsed ja täielikult turvalised ausas-kuid-uudishimulikus turva-
mudelis, kus on lubatud üks korrumpeerunud osapool.

Raamistiku praktilisuse tõestamiseks oleme loonud tarkvaraplatvormi nimega
Sharemind, mis realiseerib alamosa raamistiku võimalustest. Programmikood
on kirjutatud GNU C++ kompilaatorit ja võrguliikluse teeki RakNet kasutades.
Sharemind töötab erinevate operatsioonisüsteemidega ning me oleme seda katse-
tanud Linuxi, Mac OS X ja Microsoft Windowsi keskkonnas. Koos magistritööga
esitame ka tarkvara lähtekoodi.

Tarkvaralahendus koosneb andmekaevandaja rakendusest ning juhtimisteegist.
Andmekaevandaja rakendus, mille sees on realiseeritud raamistiku protokollid,
töötab serverina ning pakub andmetöötlusrakendustele vajalikku arvutuskeskkonda.
Juhtimisteek annab programmeerijale käsustiku, mida kasutades saab andme-
kaevandajate teenuseid kergesti kasutada. Teek tõlgib programmeerija juhised
andmekaevandajatele arusaadavateks protokolliväljakutseteks.

Töö käigus loodi mitmeid testrakendusi tarkvaraplatvormi võimaluste tutvus-
tamiseks. Magistritöös esitatakse ka eksperimenditulemused, mis näitavad süsteemi
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jõudlust. Me testisime Sharemind’i abil ehitatud skalaarkorrutise arvutamise al-
goritmi realisatsiooni ja mõõtsime programmi tööaega. Meie realisatsioon skaleerub
väga hästi ja on piisavalt kiire reaalsetes rakendustes kasutamiseks. Suurem-kui
võrdluse arvutamine on aeglasem ning vajab efektiivseks rakendamiseks kindlasti
täiendamist.

Autor soovib tänada oma juhendajaid, kelle pühendumus ja põhjalikkus olid
hindamatuks panuseks käesoleva magistritöö valmimisele.
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