
MTAT.07.006 Research Seminar in Cryptography
Building a secure aggregation database

Dan Bogdanov
University of Tartu, Institute of Computer Science

22.10.2006

1 Introduction

This paper starts by describing the privacy problem regarding the aggregation of
sensitive data. Several general solutions are considered and a secure aggregation
scheme based on secret sharing and secure multi-party computation is introduced.
We describe our current progress in building a database which provides data pri-
vacy, but allows various aggregation algorithms to run and provide correct results
on the input data.

This paper is based on joint work with Sven Laur1 and Taneli Mielikäinen2.

2 Aggregation of sensitive data

2.1 Problem statement

Databases containing personal, medical or financial information about a person are
usually classified as sensitive. Processing such data often requires special licenses
from respective authorities as determined by the law. This protection is a problem
for research organisations, who can not learn global properties or trends from
collected data, because the laws do not allow it .

In this paper we address a simplified version of the problem. Assume that we
have asked m people n sensitive questions. By collecting the answers we obtain a
matrix with m rows and n columns denoted D) which represents our data. Our
goal is to devise a method for calculating aggregate statistics from this matrix
without compromising the privacy of a single person.

1Helsinki University of Technology
2HIIT Basic Research Unit

1

Let W1, . . . ,Wk be the participants who gather data and construct the matrix.
Let M1 be the data miner who is interested in global patterns. In the common
scenario, all participants give their data to M1 who constructs D and runs aggre-
gation and data mining algorithms on it. The participants have to trust that M1

will not use the data for selfish gains. They have no way of ensuring the privacy
of people who have provided the data, because the miner requires control over the
complete database to perform calculations.

2.2 General solutions

We want to keep a specific party from having the complete database. This way
the participants will not have to trust a single entity.

2.2.1 Distribution of rows

We can divide the m× n data matrix D into smaller matrices D1, . . . ,Dt so that
each smaller matrix contains some rows from D. We can then distribute matrices
D1, . . . ,Dt to independent miners who calculate results based on their part of the
data and combine them with results of other miners. Unfortunately this solution
does not provide privacy of the data, as for each person who answered the questions
some node will have complete data about the person.

2.2.2 Distribution of columns

We can also divide the matrix D so that matrices D′
1, . . . ,D′

t contain columns
from D. This allows us to keep the data identifying the person in a separate
database from the sensitive data. Such a solution decreases the usability of the
data, because one miner has access only to some attribute. For example, this could
keep us from finding reliable aggregations or association rules based on all relevant
attributes, because some of them might not be available for a given miner.

2.2.3 Distribution of values

It is important to notice, that the two previous solutions are not secure.
Our solution does not alter the dimensions of matrix D. Instead we distribute

the values of the matrix between three miners so that no single miner or a pair of
them can find the original value given their parts of this value. Participants will
need to trust the miners not to co-operate. This can be achieved if the miners are
hosted by organisations who do not trust each other or audit each other’s work.
Examples are competing companies and government organisations protecting peo-
ple’s privacy.

2

Secret sharing and multiparty computation is used in this scenario. Partici-
pants will process values and send each miner only the respective part of the input
values. Miners can calculate aggregation results if all three of them work together.
The results are based on the complete data, but no miner has a complete row of
the input data.

3 Prerequisites

3.1 Secure multi-party computation

3.1.1 Main idea

Assume that we have n participants p1, . . . , pn and each participant i knows an
input value xi [1]. Secure multi-party computation is the calculation of a function
f(x1, . . . , xn) = (y1, . . . , yn) in such a way, that the output is correct and the inputs
of the nodes are kept private. Each node i will get the value of yi and nothing else.

One of the methods of achieving secure multi-party computation is verifiable
secret sharing. Consider the scenario in which a dealer shares a value s between
n nodes. The dealer and the nodes may be malicious. If the dealer is honest, the
nodes can gain no information about the value. Honest nodes can reconstruct s
even in the presence of malicious nodes.

3.1.2 Modelling the adversary

We use malicious nodes to model the adversary. The adversary may corrupt any
number of nodes before the protocol starts. In the beginning of the protocol the
honest players do not know, which nodes are corrupted and which are not.

In the case of a passive corruption the adversary can read all the data held,
sent and received by the node. If the corruption is active, the adversary has
complete control over the node. If the adversary is static, the set of corrupted
nodes remains the same for the whole duration of the protocol. The adversary
may also be adaptive and corrupt new nodes during the execution of the protocol.

We must limit the adversary to keep secure protocols possible. If all nodes are
corrupted, we have no hope to complete the calculation of f . Therefore we restrict
the adversary to corrupting only a proper subset of all the nodes.

3.1.3 Models of communication

There are two main communication models used in secure multi-party computa-
tion. They are the cryptographic model and the information-theoretic model. In
the cryptographic model the adversary is provided with read-only access to all the

3

messages from the traffic between honest nodes. The adversary may not modify
the messages. In the information-theoretic model all nodes have private channels
between them.

The cryptographic model is secure if the adversary cannot break the cryp-
tographic problem and read the messages. The information-theoretic model is
stronger, as even a computationally unbounded adversary can not read the mes-
sages exchanged between honest nodes.

Communication can be synchronous or asynchronous. In the synchronous mode
nodes have synchronised clocks which allows us to design protocols with rounds.
Messages sent each round will be delivered before the next round begins. An
adaptive adversary may decide to corrupt nodes in the adversary structure, but
only if they are in the respective adversary structure.

The asynchronous model is more complex as it has no guarantees on message
delivery time. If we do not have guarantees for message delivery, we can not
demand that the protocol reaches a certain step at all.

3.1.4 Example

A classical problem in multi-party computation is the millionaire problem. Assume
that Alice and Bob are millionaires who would like to know, which one of them is
richer without revealing their exact wealth.

We have two participants. Let Alice be p1 and Bob be p2. Let Alice’s wealth
be x1 and Bob’s wealth be x2. The function we need to evaluate is ”greater than”,
that is, we need to find out, if x1 > x2 without Alice knowing x2 or Bob knowing
x1.

There are various solutions to this problem. The classic one was presented
together with the problem intruduction by Yao [2].

3.2 Secret Sharing

3.2.1 Introduction

Secret sharing is used to keep values such as cryptographic keys secure [3]. An
algorithm is used to distribute the value between n nodes, so that each node gets
one share and there is another algorithm which will reconstruct the original value
when given the shares of all nodes.

3.2.2 Threshold secret sharing scheme

Assume that we have an input value s from a finite set S that we wish to keep
secret. Also consider that we have n nodes available for computation.

4

A threshold secret sharing scheme is a probabilistic algorithm S which takes s
as the input and outputs n bitstrings s1, . . . , sn. Values s1, . . . , sn are called shares.
The secret sharing scheme has a threshold t ∈ N, 0 < t < n. The adversary may
gain access to up to t shares without learning anything about the value s. If more
than t shares are available, s can be calculated.

We will define privacy and correctness as follows.
Privacy: Assume that we have run S on an input value s ∈ S and created

n nodes s1, . . . , sn. The secret sharing scheme is secure if for each subset K ∈
P ({1, . . . , n}), |K| 6 t the probability distribution of {sk|k ∈ K} is independent
of the one of s.

Correctness: Assume that we have run S on an input value s ∈ S and
created n nodes s1, . . . , sn. The secret sharing scheme is correct if for each subset
L ∈ P ({1, . . . , n}), |L| > t + 1 the value s is determined by values {sl|l ∈ L} and
there is an efficient algorithm for calculating s based on these values.

3.2.3 Share conversion

Secret sharing is a technique used for converting shares of the same secret from one
sharing scheme to a different one. This can be used to protect a system against
malicious attacks by participants who do share calculation. Other participants
may convert the shares to another scheme and still retrieve the original value.

3.2.4 Example

Follows a classic implementation by Shamir [4].
Assume that we have an input value s, n nodes and we want a threshold value

t. We pick a prime p so that p > n. The algorithm S consists of the following
steps:

1. Choose a random polynomial f(x) over Zp with a degree at most t so that
f(0) = s. A suitable polynomial is f(x) = s + a1x + a2x

2 + . . . + atx
t where

a1, . . . , at are randomly selected elements of Zp

2. Distribute values si = f(i) mod p (i = 1, . . . , n) as shares to nodes 1, . . . , n.

Each of the shares can be considered as a point on the curve determined by
the polynomial f(x). If we have t or more points of the curve, we can rebuild
the polynomial by using Lagrange interpolation. If we have less than t shares
available, we will not get a polynomial of the required degree so we can not restore
the original secret.

A share conversion solution for the Shamir scheme is descibed by Cramer,
Damg̊ard and Ishai [5].

5

4 A system for secure data aggregation

4.1 General model

Let M1, . . . ,M3 be the miners. Let W1, . . . ,Wk be the participants. The partici-
pants collect data, send it to the miners and order the miners to perform aggre-
gations on the data. The miners are responsible for storing the received data and
calculating aggregations.

Data is shared between the three miners. Distributing data into shares is
handled by the participants. The miners receive shares and store them in their
database. If we could combine the databases of the miners, we would get the
original database.

If the participants are honest, the miners have no way of retrieving the original
value without co-operating with the other two miners. If the miners are honest, the
participants have no way of seeing other participants’ data. We can also prevent
malicious input by dishonest participants by using share conversion.

To run aggregations on the data we implement the necessary share computation
operations as three-way protocols between the miners. Aggregation is done by
combining these operations. We have implemented two operations — adding a
row to the miner database and multiplying values in the database.

4.2 Data storage

The participants have input data where each record is in the form of a vector with
n elements. Each miner Mi has a database DMi

which is a matrix of size m × n.
Data elements in the system are members of Z232 .

4.3 Adding a row to the miner database

Assume that we have a random number generator RNG. The participant Wt has
a record with new values it wants to add to the miners’ database. It is represented
by a vector R (|R| = n). It creates three new vectors R1, R2 and R3 and calculates
their values as follows:

∀i = 1, . . . , n R1 [i]← RNG, R2 [i]← RNG, R3 [i] = R [i]−R1 [i]−R2 [i] (1)

Wt sends each vector Ri to the respective node Mi (i = 1, 2, 3). The miner
node Mi adds the values of Ri to its database DMi

as a new row.
All three vectors are required to restore the original value, because individual

miners see only a value that is random to them. Two values are also not enough,
because one of them is random and hence the distribution of their sum is also

6

uniform. Three values are enough, because according to (1)

∀i = 1, . . . , n R1 [i] + R2 [i] + R3 [i] = R [i].

4.4 Share multiplication

Let there be miners M1, . . . ,M3 and their databases DM1 , . . . ,DM3 . We want to
find the product of two values in the database and store it in the same database.
Note, that the input values are distributed into three shares and we need the result
also in shares.

Assume that the first value is in the k-th row and l-th column and the second
value is in the m-th row and n-th column of the database matrix. The values are
x = xA + xB + xC and y = yA + yB + yC , where xi = element from the k-th row
and l-th column of the matrix DMi

and yi = element from the m-th row and n-th
column of the matrix DMi

.
To calculate x · y we use the following protocol. We name the nodes M1, M2

and M3 Alice, Bob and Charlie respectively.

Round 1: Sharing randomness

• Alice generates r12, r13, s12, s13 ← RNG

• Bob generates r23, r21, s23, s21 ← RNG

• Charlie generates r31, r32, s31, s32 ← RNG

• All values ∗ij are sent over a secure channel from Mi to Mj

Round 2: Sharing shares

• Alice computes â12 = xA + r31, b̂12 = yA + s31, â13 = xA + r21, b̂13 = yA + s21

• Bob generates â23 = xB + r12, b̂23 = yB + s12, â21 = xB + r32, b̂21 = yB + s32

• Charlie generates â31 = xC +r23, b̂31 = yC +s23, â32 = xC +r13, b̂32 = yC +s13

• All values ∗ij are sent over a secure channel from Mi to Mj

Round 3: Local computations

• Alice computes cA = xAb̂21 +xAb̂31 +yAâ21 +yAâ31− â12b̂21− b̂12â21 +r12s13 +
s12r13

7

• Bob generates cB = xB b̂32 +xB b̂12 +yBâ32 +yAâ12− â23b̂32− b̂23â32 + r23s21 +
s23r21

• Charlie generates cC = xC b̂13 + xC b̂23 + yC â13 + yAâ23 − â31b̂13 − b̂31â13 +
r31s32 + s31r32

After running this protocol, the miners have calculated the product

xy = (cA + xAyA) + (cB + xByB) + (cC + xCyC). (2)

The correctness of the protocol can be shown by expanding both sides of equa-
tion (2) and showing that they are equal. The protocol is secure, since in every
round all miners see values with a uniform distribution. The computation requires
altogether 24 messages, each miner sends and receives 8 messages.

5 Software specification

5.1 Overview

Nodes run two kinds of software. Mining nodes run the miner software and par-
ticipants run the controller software. The miner software consists of algorithms
and protocols which perform the multi-party computation and data mining tasks.
The controller software is used to send data and commands to the miner software.

We consider two separate implementations of the system. The first is a frame-
work for algorithm testing and development and the second is a prototype of a
database engine. The systems differ in purpose, security features and performance.

5.2 Development framework

5.2.1 Overview

The development framework provides the user with tools for implementing multi-
party computation solutions in our model. It is essentially a distributed virtual pro-
cessor which has a memory and instruction scheduler. This processor is wrapped
into a function library, which can be used by client programs.

The system is self-organising. The miners are generic processes which are
configured by the client program during system initialisation. This kind of a self-
organising network makes developing easier, because running the system requires
less manual configuration.

The miners can send any data back to the client program. This includes the
contents of the database. This helps the programmer develop and debug algo-
rithms. Automated tests are possible, because the client can ask the miners for
intermediate results.

8

The software is implemented in the C++ programming language. It makes use
of the RakNet network library for communication1. The system is designed to be
cross-platform. Development is done on Apple Mac OS X and Microsoft Windows.
Linux/UNIX versions are planned.

5.2.2 Communication

The communication between nodes is message-based. During system setup the
client application locates all three miners and assigns node numbers 1, 2 and 3
to them. After that the miners connect to each other. At the end of start-up all
nodes have communication channels to other nodes in the system.

The miners in the development framework are not designed to support multiple
client applications at the same time.

5.2.3 Storage

The client programs have access to three kinds of storage. Each miner Mi has a
database Di, a stack S〉 and a heap H〉. The database is used for persistent storage.
The stack and heap are used during runtime for temporary storage. Contents of
the stack and the heap are forgotten when miners stop or restart.

The stack is used for passing parameters to instructions. For example, the share
multiplication operation could pop two values from the stack, multiply them, and
push the result back onto the stack top. The stack provides standard methods
for pushing, peeking and popping. It also provides random access to its data
so that vector operations will find the start of their parameter list. The heap is
used to store intermediate results in algorithms. The heap is implemented as an
index-addressed array of elements.

Protocols also have internal storage for intermediate results.

5.2.4 Instruction scheduler

The miners recognise a number of pre-defined commands. The commands are
divided into the following categories:

1. system operations — managing the database, modifying miner configuration

2. data transfer — exchanging data between the client program and the miners

3. computation — performing calculations with the distributed database

1RakNet — a reliable cross-platform network library. URL: http://www.rakkarsoft.com/

9

The scheduler processes one instruction at a time. The order is determined
by the arrival of messages containing the instruction code. Parameter passing is
handled by a simple and generic scheme. Parameters are not sent together with
the instruction code but rather as data values from client node to miner node.
The client sends the instruction code in one message and the parameters in the
others. The miner, when processing the instruction, first waits for the parameters
to arrive.

5.3 Prototype database

In the future work we will investigate the feasibility of building an actual prototype
database platform which could be used to process sensitive data. Such a system
will have much stricter security requirements than the development framework.

To avoid collusion by the miners, they will have to be controlled, configured
and hosted by different organisations. This means that the miners will be a lot
more independent and clients will have almost no control over their operation.

In a production environment the miners can not give out any information which
could compromise the sensitive data. This means that under no circumstances can
miners send raw shares to the clients. The miners will also need some logic which
would determine, whether the results of an aggregation query reveal too much
about the source data. In that case the miners will refuse to process the query.

The miners will have to work as a standard database server. They will have
to support and distinguish multiple simultaneous clients at the same time. The
miners’ protocols will be more specific and optimised to perform the queries as fast
as possible. Advanced scheduling and caching techniques have to be considered.

References

[1] Ronald Cramer and Ivan Damg̊ard. Multiparty computation, an introduction.
Course Notes, 2002.

[2] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudoran-
dom secret-sharing and applications to secure computation. Lecture Notes in
Computer Science, 3378:342–362, 2005.

[3] Ivan Damg̊ard. Secret sharing. Course notes, 2002.

[4] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

10

[5] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In Proceedings of the 21st Annual IEEE Symposium on the Foundations of
Computer Science, pages 160–164, 1982.

11

